

breed [hives hive]
breed [eggCohorts eggCohort]
breed [larvaeCohorts larvaeCohort]
breed [pupaeCohorts pupaeCohort]
breed [IHbeeCohorts IHbeeCohort] ; in-hive bee
breed [droneEggCohorts droneEggCohort]
breed [droneLarvaeCohorts droneLarvaeCohort]
breed [dronePupaeCohorts dronePupaeCohort]
breed [droneCohorts droneCohort]
breed [foragerSquadrons foragerSquadron]
 ; small group of foragers, groupsize: SQUADRON_SIZE
breed [miteOrganisers miteOrganiser]
 ; keep track of mites in brood cells
breed [flowerPatches flowerPatch]
breed [Signs Sign]
 ; signs to inform the user

globals [
 ABANDON_POLLEN_PATCH_PROB_PER_S
 AFF
 AFF_BASE
 AllDaysAllPatchesList
 BugAlarm
 ColonyDied
 ColonyTripDurationSum
 ColonyTripForagersSum
 CROPVOLUME
 CumulativeHoneyConsumption
 DailyForagingPeriod
 DailyHoneyConsumption
 DailyMiteFall
 DailyPollenConsumption_g
 Day
 DeathsAdultWorkers_t
 DeathsForagingToday
 DecentHoneyEnergyStore
 DRONE_EGGLAYING_START
 DRONE_EGGLAYING_STOP
 DRONE_EMERGING_AGE
 DRONE_HATCHING_AGE
 DRONE_LIFESPAN
 DRONE_PUPATION_AGE
 DRONE_EGGS_PROPORTION
 EMERGING_AGE
 EmptyFlightsToday
 ENERGY_HONEY_per_g
 ENERGY_SUCROSE
 ExcessBrood
 FIND_DANCED_PATCH_PROB
 FLIGHT_VELOCITY

 FLIGHTCOSTS_PER_m
 FORAGER_NURSING_CONTRIBUTION
 FORAGING_STOP_PROB
 ForagingRounds
 ForagingSpontaneousProb
 HarvestedHoney_kg
 HATCHING_AGE
 HONEY_STORE_INIT
 HoneyEnergyStore
 HoneyEnergyStoreYesterday
 HoPoMo_seasont
 IdealPollenStore_g
 InhivebeesDiedToday
 INVADING_DRONE_CELLS_AGE
 INVADING_WORKER_CELLS_AGE
 InvadingMitesDroneCellsReal
 ; actual number of mites invading the cells, might be
 ; lower than theor. number, if brood cells are crowded with mites
 InvadingMitesDroneCellsTheo
 ; theoretical number of mites invading the cells
 InvadingMitesWorkerCellsReal
 InvadingMitesWorkerCellsTheo
 LIFESPAN
 LostBroodToday
 ; brood that die due to lack of nursing or lack of pollen today
 LostBroodTotal ; .. and summed up
 MAX_AFF
 MAX_BROOD_NURSE_RATIO
 MAX_DANCE_CIRCUITS
 MAX_EGG_LAYING
 MAX_HONEY_ENERGY_STORE
 MAX_INVADED_MITES_DRONECELL
 MAX_INVADED_MITES_WORKERCELL
 MAX_PROPORTION_POLLEN_FORAGERS
 MAX_TOTAL_KM
 MIN_AFF
 MIN_IDEAL_POLLEN_STORE
 MITE_FALL_DRONECELL
 MITE_FALL_WORKERCELL
 MITE_MORTALITY_BROODPERIOD
 MITE_MORTALITY_WINTER
 MORTALITY_DRONE_EGGS
 MORTALITY_DRONE_LARVAE
 MORTALITY_DRONE_PUPAE
 MORTALITY_DRONES
 MORTALITY_DRONES_INFECTED_AS_PUPAE
 MORTALITY_EGGS
 MORTALITY_FOR_PER_SEC
 MORTALITY_INHIVE
 MORTALITY_INHIVE_INFECTED_AS_ADULT
 MORTALITY_INHIVE_INFECTED_AS_PUPA

 MORTALITY_LARVAE
 MORTALITY_PUPAE
 N_FLOWERPATCHES
 N_GENERIC_PLOTS
 NectarFlightsToday
 NewDroneEggs
 NewDroneLarvae
 NewDronePupae
 NewDrones
 NewDrones_healthy
 NewForagerSquadronsHealthy
 NewForagerSquadronsInfectedAsAdults
 NewForagerSquadronsInfectedAsPupae
 NewIHbees
 NewIHbees_healthy
 NewReleasedMitesToday
 ; all (healthy and infected) mites released from cells (mothers+offspring)
 ; on current day (calculated after MiteFall!)
 NewWorkerEggs
 NewWorkerLarvae
 NewWorkerPupae
 PATCHCOLOR
 PhoreticMites ; all phoretic mites, healthy and infected
 PhoreticMitesHealthyRate
 POLLEN_DANCE_FOLLOWERS
 POLLEN_STORE_INIT
 PollenFlightsToday
 POLLENLOAD
 PollenStore_g
 PollenStore_g_Yesterday
 POST_SWARMING_PERIOD
 PRE_SWARMING_PERIOD
 ProbPollenCollection
 PropNewToAllPhorMites
 PROTEIN_STORE_NURSES_d
 ProteinFactorNurses
 Pupae_W&D_KilledByVirusToday
 ; number of drone + worker pupae that were killed by the virus today
 PUPATION_AGE
 Queenage
 RecruitedFlightsToday
 SaveInvadedMODroneLarvaeToPupae
 SaveInvadedMOWorkerLarvaeToPupae
 SaveWhoDroneLarvaeToPupae
 SaveWhoWorkerLarvaeToPupae
 SEARCH_LENGTH_M
 SearchingFlightsToday
 SEASON_START ; defines beginning of foraging period
 SEASON_STOP ; end of foraging period & latest end of drone production
 SimpleDancing
 STEPWIDTH

 STEPWIDTHdrones
 SumLifeSpanAdultWorkers_t
 SummedForagerSquadronsOverTime
 SwarmingDate
 TIME_UNLOADING
 TIME_UNLOADING_POLLEN
 TodaysAllPatchesList
 TodaysSinglePatchList
 TotalBeesAdded
 ; beekeeper can add bees in autumn, these are added up as long
 ; as simulation runs
 TotalDroneEggs
 TotalDroneLarvae
 TotalDronePupae
 TotalDrones
 TotalEggs
 TotalEventsToday ; sum of todays "xxxFlightsToday"
 TotalForagers
 TotalFPdetectionProb
 TotalHoneyFed_kg
 ; if "beekeeper" has to feed the colony, fed honey is added up as long
 ; as simulation runs
 TotalHoneyHarvested_kg
 TotalIHbees
 TotalLarvae
 TotalMites
 TotalPollenAdded
 ; beekeeper can add pollen in spring, which is added up as long
 ; as simulation runs
 TotalPupae
 TotalWeightBees_kg ; weight of all bees (brood, adults, drones..)
 TotalWorkerAndDroneBrood
 VIRUS_KILLS_PUPA_PROB
 VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA
 ; probability for an infected invaded mite to infect the bee pupa
 VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES
 ; probability for an infected bee pupa to infect healthy invaded mites
 WEIGHT_WORKER_g

 AllBeeMappCorrectionsList ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 AssessmentNumber ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 WeatherDataList ; ***NEW FOR BEEHAVE_BEEMAPP2015***

]

turtles-own ; all cohorts below have these variables too
[
 age

 ploidy
 number
 numberDied
 invadedByMiteOrganiserID
]

pupaeCohorts-own
[
 number_infectedAsPupa
 number_healthy
]

dronePupaeCohorts-own
[
 number_infectedAsPupa
 number_healthy
]

IHbeeCohorts-own
[
 number_infectedAsPupa
 number_infectedAsAdult
 number_healthy
]

droneCohorts-own
[
 number_infectedAsPupa
 number_healthy
]

foragerSquadrons-own
[
 activity
 activityList
 knownNectarPatch
 knownPollenPatch
 pollenForager
 cropEnergyLoad
 collectedPollen
 mileometer
 km_today
 infectionState
]

flowerPatches-own
[
 patchType
 distanceToColony
 xcorMap
 ycorMap

 oldPatchID
 size_sqm
 quantityMyl
 amountPollen_g
 nectarConcFlowerPatch
 detectionProbability
 flightCostsNectar
 flightCostsPollen
 EEF
 danceCircuits
 danceFollowersNectar
 summedVisitors
 nectarVisitsToday
 pollenVisitsToday
 tripDuration
 tripDurationPollen
 mortalityRisk
 mortalityRiskPollen
 handlingTimeNectar
 handlingTimePollen
]

miteOrganisers-own
[
 workerCellListCondensed
 droneCellListCondensed
 cohortInvadedMitesSum
 invadedMitesHealthyRate
 invadedDroneCohortID
 invadedWorkerCohortID
]

; =========== BUTTONS ===
; ***

to Setup ; BUTTON!
 clear-all
 set N_INITIAL_BEES round N_INITIAL_BEES
 set N_INITIAL_MITES_HEALTHY round N_INITIAL_MITES_HEALTHY
 set N_INITIAL_MITES_INFECTED round N_INITIAL_MITES_INFECTED
 reset-ticks
 if ReadInfile = true [ReadFileProc]
 ParameterizationProc
 ifelse ReadInfile = false
 [CreateFlowerPatchesProc]
 ; IF: flower patches are defined by input fields in GUI
 [Create_Read-in_FlowerPatchesProc]
 ; ELSE: or read in from a text file
 if ReadBeeMappFile = true ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 [ReadBeeMappFileProc]

 CreateImagesProc
 if (Experiment = "Experiment A") or (Experiment = "Experiment B")
 [
 user-message "Please make sure experimental colony conditions are defined in Setup and
GoTreatmentProc"
 ;(INSERT INITIAL CONDITIONS FOR EXPERIMENTAL COLONIES HERE)
 GoTreatmentProc
]

end

;
**
**

to CreateOutputFileProc
 ; BUTTON! writes data in file, copied from:
 ; Netlogo: Library: Code Examples: Output_Example.nlogo

 set WriteFile true
 let filename "Output.txt"
 if is-string? filename ; to make sure filename is a string
 [
 if file-exists? filename ; if the file already exists, it is deleted
 [
 file-delete filename
]
 file-open filename
 WriteToFileProc ; record the initial turtle data
]
end

;
**
**

to StartProc
 ; called by Day/Month/Year/x days and RUN Button

 if BugAlarm = true
 [
 ask patches
 [
 set pcolor red
]
 user-message ("BUG ALARM!! (Start Proc)") stop

 ; programm is stopped, if an "assertion" is violated, background becomes red
]

 if (stopDead = true) and (ColonyDied = true) [stop]
 ; programm is stopped, if colony is dead and stopDead switch is "On"

 Go ; <<<<<<<<<<<<<<<<<<<<<<<<<<

 if WriteFile = true [WriteToFileProc]
 ; results are recorded in Output
 ; file after each timestep

end ; StartProc

;===
==
=============

to ParameterizationProc

; begin ***NEW FOR BEEHAVE_BEEMAPP2015***
 set WeatherDataList []
 if Weather = "Weather File"
 [
 ifelse file-exists? WeatherFile
 [
 file-open WeatherFile
 while [not file-at-end?]
 [
 set WeatherDataList lput read-from-string(file-read-line) WeatherDataList
]
 file-close
]
 [user-message "No such weather input file available!"]
]
; end ***NEW FOR BEEHAVE_BEEMAPP2015***

; BROOD CARE:
 set FORAGER_NURSING_CONTRIBUTION 0.2
 set MAX_BROOD_NURSE_RATIO 3
 ; 3 (3: Free & Racey 1968) (Becher et al. 2010: 2.65)
 ; # brood that can be raised by a single "nurse" bee ("nurse": IH-bee and
 ; to some degree also foragers!, see FORAGER_NURSING_CONTRIBUTION)

; COLONY:
 set ColonyDied FALSE
 set DRONE_EGGS_PROPORTION 0.04
 ; 0.04 Wilkinson&Smith 2002 (from Allen 1963, 1965)

 set MIN_IDEAL_POLLEN_STORE 250
 ; 250 [g] min. amount of pollen that a colony tries to store

 set POLLEN_STORE_INIT 100
 ; 100 [g] pollen present on 1st day of simulation

 set PRE_SWARMING_PERIOD 3
 ; HoPoMo: 3d, see also Winston p. 184

 set PROTEIN_STORE_NURSES_d 7
 ; 7 [d] Crailsheim 1990

 set ProteinFactorNurses 1
 ; 0..1, is daily calculated in PollenConsumptionProc, reflects protein
 ; content of brood food

 set Queenage 230 ; queen emerged mid of May

 set WEIGHT_WORKER_g 0.1
 ; 0.125 0.1 or 0.11 or 0.125
 ; (0.1: HoPoMo 0.11: ; Martin 1998: 1kg adults = 9000 bees)
 ; (0.125: Calis et al. 1999) higher weight => less mites!

; DEVELOPMENT:
 set AFF_BASE 21 ; like BEEPOP
 set MIN_AFF 7 ; Robinson 1992: 7d; see also: Winston 1987, p. 92/93
 ; models: Amdam & Omholt 2003, Beshers et al 2001: 7d
 set MAX_AFF 50
 ; within range given in Winston 1987, p. 92/93
 set DRONE_EGGLAYING_START 115
 ; 115: 25.April (Allen 1963: late April ..late August)
 set DRONE_EGGLAYING_STOP 240
 ; 240 240: 28.August (Allen 1963: late April ..late August)
 set DRONE_HATCHING_AGE 3 ; Jay 1963, Hrassnig, Crailsheim 2005
 set DRONE_PUPATION_AGE 10 ; i.e. capping of the cell; Fukuda, Ohtani 1977
 set DRONE_EMERGING_AGE 24
 set HATCHING_AGE 3 ; Winston p. 50
 set PUPATION_AGE 9 ; i.e. capping of the cell
 set EMERGING_AGE 21
 set MAX_EGG_LAYING 1600 ; 1600 max. # eggs laid per day

; ENVIRONMENT
 set SEASON_START 1 ; season: 1st January - 31st December, i.e.
 set SEASON_STOP 365 ; foraging potentially possible throughout the year (weather depending)
 set ABANDON_POLLEN_PATCH_PROB_PER_S 0.00002

; FORAGING
 set CROPVOLUME 50
 ; 50 [microlitres] (~50mg nectar) Winston (1987), Nuñez (1966, 1970), Schmid-Hempel et al.
(1985)
 set FIND_DANCED_PATCH_PROB 0.5; (0.5 = ca. average of reported values):

 ; Seeley 1983: recruits required 4.8 dance-guided search trips to find target patch = 0.21
 ; Judd 1995: of 63 dance followers, 16 were successful, 16/63 = 0.25
 ; Biesmeijer, deVries 2001: review: 0.95 (Oettingen-Spielberg 1949), 0.73 (Lindauer 1952)

 set FLIGHT_VELOCITY 6.5
 ; 6.57084 [m/s] derived from Seeley 1994, mean velocity
 ; during foraging flight see also Ribbands p127: 12.5-14.9mph (*1.609=20.1-24.0 km/h =
 ; 5.58-6.66m/s)

 set FLIGHTCOSTS_PER_m 0.000006 ;
 ; [kJ/m] Flightcosts per m (Goller, Esch 1990: 0.000006531 kJ/m, (assuming speed of 6.5m/s:
 ; flight costs: 0.0424W - compare with Schmid-Hempel et al. 1985: 0.0334W => 0.000005138)

 set FORAGING_STOP_PROB 0.3

 set MAX_DANCE_CIRCUITS 117 ; (117) (Seeley, Towne 1992)
 set MAX_PROPORTION_POLLEN_FORAGERS 0.8 ; (0.8: Lindauer 1952)
 set POLLEN_DANCE_FOLLOWERS 2 ; 2: number of bees, following a pollen dancer
 set POLLENLOAD 0.015
 ; [g] 0.015g average weight of 2 pollen pellets, HoPoMo: 15 mg: "On average,
 ; one pollen foraging flight results in 15mg of collected pollen (Seeley, 1995)"

 set ProbPollenCollection 0
 ; probability to collect pollen instead of nectar calculated in ForagingRoundProc

 set SEARCH_LENGTH_M 17 * 60 * FLIGHT_VELOCITY ; 17*60*6.5 = 6630m
 ; [m] distance (= 17 min!), a unsuccesful forager flies on average
 ; Seeley 1983: search trip: 17min (+-11)

 set SimpleDancing FALSE
 ; (false) if true: fixed nectar dancing TH and fixed number of dance followers

 set TIME_UNLOADING 116
 ; (116) [s] time, a nectar forager needs to become unloaded derived from Seeley 1994

 set TIME_UNLOADING_POLLEN 210
 ; (210s = 3.5 min) [s] Ribbands p.131: 3.5 minutes (Park 1922,1928b)

 set TotalFPdetectionProb -1
 ; correct value is set in "Foraging_searchingProc" but only when searching takes places

; MORTALITY
 set DRONE_LIFESPAN 37
 ; Fukuda Ohtani 1977; life span drones: summer: 14d, autumn: 32-42d
 set LIFESPAN 290
 ; [d] 290d (max. life span of worker; Sakagami, Fukuda 1968)

 set MAX_TOTAL_KM 800
 ; [km] 800, as mortality acts only at end of time step! 838km: max. flight
 ; performance in a foragers life (Neukirch 1982)

 set MORTALITY_DRONE_EGGS 0.064 ; Fukuda Ohati 1977:
 set MORTALITY_DRONE_LARVAE 0.044 ; 100 eggs, 82 unsealed brood, 60 sealed brood and 56
adults
 set MORTALITY_DRONE_PUPAE 0.005
 set MORTALITY_DRONES 0.05 ; Fukuda Ohati 1977: "summer", av. lifespan: 14d
 set MORTALITY_EGGS 0.03 ; HoPoMo p. 230: 0.03
 set MORTALITY_LARVAE 0.01 ; HoPoMo p. 230: 0.01
 set MORTALITY_PUPAE 0.001 ; HoPoMo p. 230: 0.001
 set MORTALITY_FOR_PER_SEC 0.00001
 ; derived from Visscher&Dukas 1997 (Mort 0.036 per hour foraging)

 set MORTALITY_INHIVE 0.004;
 ; 0.0038: derived from Martin 2001 (healthy winter
 ; based on 50% mortality) (HoPoMo: MORTALITYbase: 0.01) p. 230

; PHYSICS
 set ENERGY_HONEY_per_g 12.78
 ; [kJ/g] (= [J/mg]) Wikipedia: http://www.nal.usda.gov/fnic/foodcomp/search/

 set ENERGY_SUCROSE 0.00582 ; 0.00582 [kJ/micromol] 342.3 g/mol

; PROGRAM
 set STEPWIDTH 50 ; for graphic
 set STEPWIDTHdrones 5 ; for graphic
 set BugAlarm FALSE ;
 set N_GENERIC_PLOTS 8

; VARROA
 set MITE_FALL_DRONECELL 0.2
 ; 0.2 (20%) Martin 1998 proportion of those mites emerging from
 ; worker cells, which fall from the comb and are hence considered to die.

 set MITE_FALL_WORKERCELL 0.3
 ; 0.3 (30%) Martin 1998 proportion of those mites emerging from drone
 ; cells, which fall from the comb and are hence considered to die.

 set MITE_MORTALITY_BROODPERIOD 0.006
 ; Martin 1998: 0.006; (0.006: Fries et al 1994, Tab. 6) daily mortality of phoretic
 ; mites during brood period

 set MITE_MORTALITY_WINTER 0.002
 ; Martin 1998: 0.002; Fries et al 1994: 0.004 (Tab. 6)
 set NewReleasedMitesToday 0
 ; all (healthy and infected) mites released from cells (mothers+offspring)
 ; on current day (calculated after MiteFall!)

; AUXILIARY VARIABLES
 set DecentHoneyEnergyStore N_INITIAL_BEES * 1.5 * ENERGY_HONEY_per_g
 ; re-set in every foraging round (ForagingRoundProc)

 set HONEY_STORE_INIT 0.5 * MAX_HONEY_STORE_kg * 1000
 ; [g] (1g Honey = 124.80kJ)

 set HoneyEnergyStore (HONEY_STORE_INIT * ENERGY_HONEY_per_g) ; [kJ]
 set IdealPollenStore_g POLLEN_STORE_INIT
 ; [g] is calculated daily in PollenConsumptionProc

 set MAX_HONEY_ENERGY_STORE MAX_HONEY_STORE_kg * ENERGY_HONEY_per_g * 1000 ; [kJ]
 set PollenStore_g POLLEN_STORE_INIT ; [g]
 set NewForagerSquadronsHealthy (N_INITIAL_BEES / SQUADRON_SIZE)
 ; foragers in time step 1 are all healthy

 set TotalForagers NewForagerSquadronsHealthy * SQUADRON_SIZE
 ; has to be set here to calculate egg laying on the 1st time step

 set Aff AFF_BASE
 set INVADING_DRONE_CELLS_AGE DRONE_PUPATION_AGE - 2
 ; 2d before capping, Boot et al. 1992 (Exp. & Appl. Acarol. 16:295-301)

 set INVADING_WORKER_CELLS_AGE PUPATION_AGE - 1
 ; 1d before capping, Boot et al. 1992 (Exp. & Appl. Acarol. 16:295-301)

 set PhoreticMites N_INITIAL_MITES_HEALTHY + N_INITIAL_MITES_INFECTED
 set TotalMites PhoreticMites
 set PATCHCOLOR 38 ; colour of the background
 ask patches [set pcolor PATCHCOLOR]
 if (N_INITIAL_MITES_HEALTHY + N_INITIAL_MITES_INFECTED) > 0
 [
 set PhoreticMitesHealthyRate N_INITIAL_MITES_HEALTHY
 / (N_INITIAL_MITES_HEALTHY + N_INITIAL_MITES_INFECTED)
]
 if RAND_SEED != 0 [random-seed RAND_SEED]
 ; if RAND_SEED set to 0, random numbers will differ in every run

 ; MITE REPRODUCTION MODELS:
 if MiteReproductionModel = "Fuchs&Langenbach"
 [
 set MAX_INVADED_MITES_DRONECELL 16
 ; 16 (Fuchs&Langenbach 1989) defines length of workercell, dronecell list
 ; of MiteOrganisers

 set MAX_INVADED_MITES_WORKERCELL 8
 ; (Fuchs&Langenbach 1989)
 ; defines length of workercell, dronecell list of MiteOrganisers
]

 if MiteReproductionModel = "Martin"
 [
 set MAX_INVADED_MITES_DRONECELL 4
 ; defines length of workercell, dronecell list of MiteOrganisers
 set MAX_INVADED_MITES_WORKERCELL 4

 ; defines length of workercell, dronecell list of MiteOrganisers
]

 if MiteReproductionModel = "Test"
 [
 set MAX_INVADED_MITES_DRONECELL 5
 set MAX_INVADED_MITES_WORKERCELL 5
]

 if MiteReproductionModel = "Martin+0"
 [
 set MAX_INVADED_MITES_DRONECELL 5
 set MAX_INVADED_MITES_WORKERCELL 5
]

 if MiteReproductionModel = "No Mite Reproduction"
 [
 set MAX_INVADED_MITES_DRONECELL 5
 set MAX_INVADED_MITES_WORKERCELL 5
]

 ; VIRUS TYPES;
 if Virus = "DWV"
 [
 set VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA 0.89 ; 0.89
 set VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES 1 ; 1: Martin 2001
 set VIRUS_KILLS_PUPA_PROB 0.2 ; DWV: 0.2 (Martin 2001)
 set MORTALITY_INHIVE_INFECTED_AS_PUPA 0.012; (0.0119)
 ; if pupa was infected but survived
 ; based on Martin 2001 Survivorship curve (infected, winter)
 ; calculated at: 50% mortality(=58d);

 set MORTALITY_INHIVE_INFECTED_AS_ADULT MORTALITY_INHIVE
 ; Martin 2001: DWV infected adults become carriers with unaffected survivorship

 set MORTALITY_DRONES_INFECTED_AS_PUPAE MORTALITY_INHIVE_INFECTED_AS_PUPA *
(MORTALITY_DRONES / MORTALITY_INHIVE)
 ; NO data on drone mortality! Use same increase in mortality as for workers
]

 if Virus = "APV"
 [
 set VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA 1
 set VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES 0
 ; 0: Martin 2001 (0, as the pupae dies! - so this value doesn't matter at all!)

 set VIRUS_KILLS_PUPA_PROB 1 ; APV: 1 (Martin 2001)
 set MORTALITY_INHIVE_INFECTED_AS_PUPA 1
 ; doesn't matter, as APV infected pupae die before emergence!

 set MORTALITY_INHIVE_INFECTED_AS_ADULT 0.2

 ; (0.2: Sumpter & Martin 2004)

 set MORTALITY_DRONES_INFECTED_AS_PUPAE MORTALITY_INHIVE_INFECTED_AS_PUPA *
(MORTALITY_DRONES / MORTALITY_INHIVE)
 ; NO data on drone mortality! Use same increase in mortality as for workers
]

 if Virus = "benignDWV" ; like DWV but does not harm the infected bees
 [
 set VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA 0.89 ; 1
 set VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES 1
 ; 0: Martin 2001 (0, as the pupae dies!)
 set VIRUS_KILLS_PUPA_PROB 0 ; (benign!)
 set MORTALITY_INHIVE_INFECTED_AS_PUPA MORTALITY_INHIVE ; (benign!)
 set MORTALITY_INHIVE_INFECTED_AS_ADULT MORTALITY_INHIVE
 set MORTALITY_DRONES_INFECTED_AS_PUPAE MORTALITY_INHIVE_INFECTED_AS_PUPA
 ; NO data on drone mortality! Use worker mortality!
]

 if Virus = "modifiedAPV"
 [
 set VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA 1 ; 1
 set VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES 1 ;
 set VIRUS_KILLS_PUPA_PROB 1 ; APV: 1 (Martin 2001)
 set MORTALITY_INHIVE_INFECTED_AS_PUPA 1
 ; doesn't matter, as APV infected pupae die before emergence!

 set MORTALITY_INHIVE_INFECTED_AS_ADULT 0.2
 ; (0.2: Sumpter & Martin 2004)

 set MORTALITY_DRONES_INFECTED_AS_PUPAE MORTALITY_INHIVE_INFECTED_AS_PUPA
 ; NO data on drone mortality! Use worker mortality!
]

 if Virus = "TestVirus"
 [
 set VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA 1 ; 0.89
 set VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES 1 ; 1: Martin 2001
 set VIRUS_KILLS_PUPA_PROB 0 ; DWV: 0.2 (Martin 2001)
 set MORTALITY_INHIVE_INFECTED_AS_PUPA 0.012; (0.0119)
 ; if pupae was infected but survived; based on Martin 2001 Survivorship
 ; curve (infected, winter) calculated at 50% mortality = 58d age

 set MORTALITY_INHIVE_INFECTED_AS_ADULT MORTALITY_INHIVE
 ; Martin 2001: DWV infected adults become carriers with unaffected survivorship

 set MORTALITY_DRONES_INFECTED_AS_PUPAE MORTALITY_INHIVE_INFECTED_AS_PUPA
 ; NO data on drone mortality! Use worker mortality!
]

end;

;
**
**

to CreateImagesProc
 ; "signs" are symbols in the NetLogo "World" which are used to visualize structure
 ; and dynamics of the colony/varroa model

 create-hives 1
 [
 ifelse ReadInfile = true ;
 ; true: hive placed on the left side, else: in the centre
 [setxy -1 4.5]
 [setxy 16 4.5]
 set size 7 set shape "beehiveDeepHive" set color brown
]

 create-Signs 1
 [
 setxy 16 -15
 set shape "skull"
 set size 15
 set color black
 hide-turtle
] ;

 create-Signs 1
 [
 setxy 40 3
 set shape "sun"
 set size 7
 set color yellow
 hide-turtle
] ;

 create-Signs 1
 [
 setxy 37 2
 set shape "cloud"
 set size 7
 set color grey
 hide-turtle
]

 create-Signs 1
 [
 setxy 38 -10
 set shape "beelarva_x2"
 set size 8

 set color white
 facexy xcor + 1 ycor + 1 ; (turned by 45deg)
 hide-turtle
]

 create-Signs 1
 [
 setxy 31 3
 set shape "arrow"
 set size 4
 set color green
 facexy xcor + 1 ycor
 set label (HoneyEnergyStore - HoneyEnergyStoreYesterday)
 / (ENERGY_HONEY_per_g * 1000)
]

 create-Signs 1
 [
 setxy 26 3
 set shape "arrowpollen"
 set size 4
 set color green
 facexy xcor - 1 ycor
 set label (PollenStore_g - PollenStore_g_Yesterday)
]

 create-Signs 1
 ; sign for suppressed foraging i.e. if foraging prob. is set
 ; to 0 although weather is suitable for foraging
 [
 setxy 36 -4
 set shape "exclamation"
 set size 3
 set color orange
 hide-turtle
]

 create-Signs 1
 [
 setxy 38 -18
 set shape "pete"
 set size 6
 set color white
 set label-color black
 hide-turtle
]

 create-Signs 1
 [
 setxy 38 -25
 set shape "honeyjar"

 set size 6
 set color white
 hide-turtle
]

 create-Signs 1
 [
 setxy 38 -25
 set shape "ambrosia"
 set size 6
 set color white
 hide-turtle
]
 create-Signs 1
 [
 setxy 42.5 -25
 set shape "pollengrain"
 set size 7
 set color yellow
 hide-turtle
]
 create-Signs 1
 [
 setxy 38 -31
 set shape "varroamite03"
 set size 6
 set color 33
 set heading 0
 hide-turtle
]
 create-Signs 1
 [
 setxy 38 -31.2
 set shape "x"
 set size 6
 set color red
 hide-turtle
]
 create-Signs 1
 [
 setxy 38 -33
 set shape "colonies_merged"
 set size 6
 set color brown
 set heading 45
 hide-turtle
]
 create-Signs 1
 [
 setxy 38 -40
 set shape "queen"

 set size 8
 set color 33
 set heading 0
 hide-turtle
]
 create-Signs 1 ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 [
 setxy 38 -40
 set shape "queenx"
 set size 8
 set color 33
 set heading 0
 hide-turtle
]
end

;
**
**

to Go
 tick
 DailyUpdateProc
 SeasonProc_HoPoMo
 ; Egg laying & development:
 WorkerEggsDevProc
 DroneEggsDevProc
 NewEggsProc
 if Swarming != "No swarming" [SwarmingProc]
 WorkerEggLayingProc
 DroneEggLayingProc
 WorkerLarvaeDevProc
 DroneLarvaeDevProc
 NewWorkerLarvaeProc
 NewDroneLarvaeProc
 WorkerPupaeDevProc
 DronePupaeDevProc
 NewWorkerPupaeProc
 NewDronePupaeProc
 WorkerIHbeesDevProc
 DronesDevProc
 BroodCareProc
 NewIHbeesProc
 NewDronesProc
 ; Varroa mite module:
 MiteProc
; if (TotalMites > 0) [MiteProc] ; ***NEW FOR BEEHAVE_BEEMAPP2015***

 BeekeepingProc
 DrawIHcohortsProc

 ; Foraging module:
 GenericPlotClearProc
 if (TotalForagers
 + NewForagerSquadronsHealthy * SQUADRON_SIZE
 + NewForagerSquadronsInfectedAsPupae * SQUADRON_SIZE
 + NewForagerSquadronsInfectedAsAdults * SQUADRON_SIZE) > 0
 [
 Start_IBM_ForagingProc
]

 ask turtles
 [
 set label-color black
 ifelse ploidy = 2
 [
 set label number
]
 [
 if ploidy = 1
 [
 set label number
]
]
]
 CountingProc
 PollenConsumptionProc
 HoneyConsumptionProc
 DoPlotsProc
end

;
**
**

to GoTreatmentProc
 ; similar to "Go", but used if colonies don't start on 1st January
 ; (e.g. to mimic empirical colony treatments), called only once by "Setup"
 ; but contains a "repeat"-loop

;; repeat (INSERT START DAY)
;; [
;; Go
;; set HoneyEnergyStore (MAX_HONEY_ENERGY_STORE / 5)
;; set PollenStore_g 0.5 * IdealPollenStore_g
;; ; guarantees survival of colonies before experiment
;;]
;;
;; ask (turtle-set droneEggCohorts droneLarvaeCohorts) [set number (INSERT NUMBER)]
;;

;; ask (turtle-set dronePupaeCohorts droneCohorts)
;; [
;; set number (INSERT NUMBER)
;; set number_healthy (INSERT NUMBER)
;; set number_infectedAsPupa (INSERT NUMBER)
;;]
;; ask eggCohorts [set number (INSERT NUMBER)]
;; ask larvaeCohorts [set number (INSERT NUMBER)]
;; ask pupaeCohorts
;; [
;; set number (INSERT NUMBER)
;; set number_Healthy (INSERT NUMBER)
;; set number_infectedAsPupa (INSERT NUMBER)
;;]
;;
;; ask IHbeeCohorts
;; [
;; set number_healthy (INSERT NUMBER)
;; set number_infectedAsPupa (INSERT NUMBER)
;; set number_infectedAsAdult (INSERT NUMBER)
;;]
;;
;; set HoneyEnergyStore ENERGY_HONEY_per_g * (INSERT NUMBER OF CELLS WITH HONEY)
;; ; 1 comb ca. 2*3268 cells (PJK), 1 cell full of honey = 500mg
;; ; (Schmickl, Crailsheim, HoPoMo)
;;
;; if Experiment = "INSERT NAME EXPERIMENT A"
;; [
;; (INSERT INITIAL CONDITIONS FOR EXERIMENT A)
;;]
;;
;; if Experiment = "INSERT NAME EXPERIMENT B"
;; [
;; (INSERT INITIAL CONDITIONS FOR EXERIMENT B)
;;]
;;
;;
;; ask miteOrganisers
;; [
;; set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [(INSERT
NUMBER)]
;;] ; +1 as also the number of mite free cells is stored in this list
;;
;; StartProc
end

;
**
**

to-report FlowerPatchesMaxFoodAvailableTodayREP [patchID foodType]
 ; foodType: "Nectar" or "Pollen"
 ; determines the max amount of nectar and pollen available at the patch today
 ; this reporter is ONLY called if ReadInfile = FALSE!!
 ; called by: CreateFlowerPatchesProc (i.e. 1x per run), DailyUpdateProc (i.e. 1x per day),
 ; and FlowerPatchesUpdateProc (i.e. 1x per foraging round)

 ifelse SeasonalFoodFlow = true
 [
 ; SEASONAL variation of nectar ond pollen availability at RED and
 ; GREEN patch (if SeasonalFoodFlow = ON):
 let patchDayR day + SHIFT_R
 if day + SHIFT_R > 365 [set patchDayR patchDayR - 365]
 ; to shift the seasonal food offer to earlier (+) or later (-) in the year

 let patchDayG day + SHIFT_G
 if day + SHIFT_G > 365 [set patchDayG patchDayG - 365]

 if foodType != "Nectar" and foodType != "Pollen"
 [
 set BugAlarm true
 show "BUG ALARM in FlowerPatchesFoodAvailableTodayREP - Wrong 'foodType' of flower
patch!"
]
 if patchID != 0 and patchID != 1
 [
 set BugAlarm true
 show "BUG ALARM in FlowerPatchesFoodAvailableTodayREP - Wrong 'who' of flower patch!"
]

 if ReadInfile = true
 [
 set BugAlarm true
 show "BUG ALARM in FlowerPatchesFoodAvailableTodayREP - called although ReadInfile = true!"
]

 if patchID = 0 ; "RED" patch
 [
 if foodType = "Nectar"
 [
 report (1 - Season_HoPoMoREP patchDayR []) * QUANTITY_R_l * 1000 * 1000
]
 if foodType = "Pollen"
 [
 report (1 - Season_HoPoMoREP patchDayR []) * POLLEN_R_kg * 1000
]
]

 if patchID = 1 ; "GREEN" patch
 [
 if foodType = "Nectar"

 [
 report (1 - Season_HoPoMoREP patchDayG []) * QUANTITY_G_l * 1000 * 1000
]
 if foodType = "Pollen"
 [
 report (1 - Season_HoPoMoREP patchDayG []) * POLLEN_G_kg * 1000
]
]
]
 [
 ; ELSE (i.e. if SeasonalFoodFlow = FALSE):
 if foodType = "Nectar"
 [
 if patchID = 0 [report QUANTITY_R_l * 1000 * 1000] ; "red" patch
 if patchID = 1 [report QUANTITY_G_l * 1000 * 1000] ; "green" patch
]

 if foodType = "Pollen"
 [
 if patchID = 0 [report POLLEN_R_kg * 1000] ; "red" patch
 if patchID = 1 [report POLLEN_G_kg * 1000] ; "green" patch
]
]
end

;
**
**

to DailyUpdateProc
 set Day round (ticks mod 365.00001)
 set DeathsAdultWorkers_t 0
 set SumLifeSpanAdultWorkers_t 0
 set DailyMiteFall 0
 set Pupae_W&D_KilledByVirusToday 0
 set NewReleasedMitesToday 0
 ; all (healthy and infected) mites released from cells (mothers+offspring)
 ; on current day (calculated after MiteFall!)

 ask foragerSquadrons [set km_today 0]
 if N_INITIAL_MITES_INFECTED = 0 and AllowReinfestation = false
 [
 if (count foragerSquadrons with [infectionState = "infectedAsPupa"]
 + count foragerSquadrons with [infectionState = "infectedAsAdult"]) > 0
 or
 (count IHbeeCohorts with [number_infectedAsPupa > 0]
 + count IHbeeCohorts with [number_infectedAsAdult > 0]) > 0
 [

 set BugAlarm true
 show "BUG ALARM! Infected bees from out of the blue!"
]
]

 ask flowerpatches
 [
 ifelse (quantityMyl < CROPVOLUME * SQUADRON_SIZE
 and
 amountPollen_g < POLLENLOAD * SQUADRON_SIZE)
 [set shape "fadedFlower"] ; IF
 [set shape "Flower"] ; ELSE = not empty
]

 set DailyForagingPeriod Foraging_PeriodREP
 set HoneyEnergyStoreYesterday HoneyEnergyStore
 set PollenStore_g_Yesterday PollenStore_g
 set LostBroodToday 0
 set Queenage Queenage + 1

 ask patch 0 -27 [set plabel 5] ask patch 0 -32 [set plabel 10]
 ask patch 0 -37 [set plabel 15] ask patch 0 -42 [set plabel 20]
 ask patch 0 -47 [set plabel 25] ask patch 0 -52 [set plabel 30]
 ask patch 0 -57 [set plabel 35] ask patch 1 -58 [set plabel "age "]

 set SearchingFlightsToday 0
 set RecruitedFlightsToday 0
 set NectarFlightsToday 0
 set PollenFlightsToday 0
 set EmptyFlightsToday 0
 set DeathsForagingToday 0

 if ReadInfile = false
 [
 ask flowerPatches
 [; flower patches are set to the max. amount of nectar and pollen possible today:
 set quantityMyl FlowerPatchesMaxFoodAvailableTodayREP who "Nectar"
 set amountPollen_g FlowerPatchesMaxFoodAvailableTodayREP who "Pollen"
]
]

 ask flowerPatches
 [
 set nectarVisitsToday 0 set pollenVisitsToday 0
 if detectionProbability < -1
 [
 set BugAlarm true
 user-message "Wrong detection probability! Set 'ModelledInsteadCalcDetectProb' 'false' and re-
start run!"
]
]

 if ReadInfile = true
 [
 set TodaysSinglePatchList []
 ; short list, contains data of current patch and only for today
 set TodaysAllPatchesList []
 ; shorter list, contains data of all patches, but only for today
 let counter (Day - 1)
 repeat N_FLOWERPATCHES
 [
 ; todays data for ALL N_FLOWERPATCHES flower patches are saved in a new,
 ; shorter list (= todaysAllPatchesList)

 set TodaysSinglePatchList (item counter AllDaysAllPatchesList)
 ; this new, shorter list (= todaysAllPatchesList) is comprised of very
 ; short lists (=todaysSinglePatchList) that contain only the data of the
 ; current patch and only for today

 set TodaysAllPatchesList fput TodaysSinglePatchList TodaysAllPatchesList
 ; fput: faster as lput (NetLogo version 4)! however: list is in reversed order!

 set counter counter + 365
 let id item 1 TodaysSinglePatchList ; patch number

 ask flowerpatch id
 [
 set amountPollen_g item 8 TodaysSinglePatchList ; [g]
 if amountPollen_g < 0 [set amountPollen_g 0]
 set quantityMyl (item 10 TodaysSinglePatchList) * 1000 * 1000
 ; [microlitres] new nectar value from infile (emptied flowers
 ; replenish nectar completely (or are replace by new flowers))

 if quantityMyl < 0 [set quantityMyl 0]
 if id != who [user-message "Error in id / who!" set BugAlarm true]

 if shape != "fadedflower"
 [
 ifelse amountPollen_g > 250
 [set shape "flowerorange"]
 [set shape "flower"]
]
 ; if a "reasonable" amount of pollen available, patch is shown
 ; as 'pollen patch'

 ifelse quantityMyl < CROPVOLUME * SQUADRON_SIZE [set color grey]
 [
 set color scale-color red eef 0 50
 ; colour: reddish, dependent on eef, if eff >= 50: white
]
]
] ; ask flowerpatch ID

 set todaysAllPatchesList reverse todaysAllPatchesList
 ; to correct the reversed order, caused by the fput command
] ; repeat

 ask patches [set pcolor PATCHCOLOR]

 ask hives
 [
 set shape "beehiveDeepHive"
 ; # of supers on drawn colony depends on honey store

 if HoneyEnergyStore / ENERGY_HONEY_per_g > 15000 [set shape "beehive1super"]
 if HoneyEnergyStore / ENERGY_HONEY_per_g > 30000 [set shape "beehive2super"]
 if HoneyEnergyStore / ENERGY_HONEY_per_g > 45000 [set shape "beehive3super"]
 if HoneyEnergyStore / ENERGY_HONEY_per_g > 60000 [set shape "beehive4super"]
 if HoneyEnergyStore / ENERGY_HONEY_per_g > 75000 [set shape "beehive5super"]
 if HoneyEnergyStore / ENERGY_HONEY_per_g > 90000 [set shape "beehive6super"]
 if HoneyEnergyStore / ENERGY_HONEY_per_g > 105000 [set shape "beehive7super"]
 if HoneyEnergyStore < 0
 [
 if ColonyDied = false
 [
 output-print word "Starvation! Colony died on Day " ticks
]
 set ColonyDied true
]
] ; ask hives

 if (ticks > 1) and (TotalWorkerAndDroneBrood + TotalIHbees + TotalForagers = 0)
 [
 if ColonyDied = false
 [
 output-print word "No bees left! Colony died on Day " ticks
]
 set ColonyDied true
]

 if (Day = 365)
 [
 output-type word "31.12.: COLONY SIZE: " (TotalIHbees + TotalForagers)
 output-type " HONEY STORE [kg]: "
 output-print precision (HoneyEnergyStore / (1000 * ENERGY_HONEY_per_g)) 1
]

 if (Day = 365) and (TotalIHbees + TotalForagers < CRITICAL_COLONY_SIZE_WINTER)
 [
 if ColonyDied = false
 [
 output-print word "Winter mortality! Colony died on Day " ticks
]

 set ColonyDied true
]

 if ColonyDied = true
 [
 ask hives [set color grey]
 ; grey colony: died! (even if it "recovers" later, it remains grey)

 if stopDead = true
 [
 ask Signs with [shape = "skull"]
 [
 show-turtle
]
]
 ask patches [set pcolor black]
 if stopDead = true
 [
 ask eggCohorts [set number 0]
 ask larvaeCohorts [set number 0]
 ask pupaeCohorts
 [
 set number 0
 set number_Healthy 0
 set number_infectedAsPupa 0
]
 ask IHbeeCohorts
 [
 set number 0
 set number_Healthy 0
 set number_infectedAsPupa 0
 set number_infectedAsAdult 0
]
 ask foragerSquadrons [die]
 ask droneEggCohorts [set number 0]
 ask droneLarvaeCohorts [set number 0]
 ask dronePupaeCohorts
 [
 set number 0
 set number_Healthy 0
 set number_infectedAsPupa 0
]
 ask droneCohorts [set number 0]
] [
]

 set number 0
 set number_Healthy 0 ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 set number_infectedAsPupa 0 ; ***NEW FOR BEEHAVE_BEEMAPP2015***
]
]

]

 if ReadBeeMappFile = true [BeeMappCorrectionProc] ; ***NEW FOR
BEEHAVE_BEEMAPP2015***
end

;
**
**

to-report Season_HoPoMoREP [today parameterList]
 ; see Schmickl&Crailsheim2007: p.221 and p.230
 ; Values HoPoMo: x1 385; x2 30; x3 36; x4 155; x5 30

 let x1 385 ;385
 let x2 25 ; (earlier increase in egg laying rate than in HoPoMo)
 let x3 36 ; 36
 let x4 155 ;155 ; Day of max. egg laying
 let x5 30 ;30
 if empty? parameterList = false
 [
 set x1 item 0 parameterList
 set x2 item 1 parameterList
 set x3 item 2 parameterList
 set x4 item 3 parameterList
 set x5 item 4 parameterList
]
 let seas1 (1 - (1 / (1 + x1 * e ^ (-2 * today / x2))))
 let seas2 (1 / (1 + x3 * e ^ (-2 * (today - x4) / x5)))
 ifelse seas1 > seas2
 [report seas1]
 [report seas2]
end

;
**
**

to SeasonProc_HoPoMo
 ; see Schmickl&Crailsheim2007: p.221 and p.230

 set HoPoMo_seasont Season_HoPoMoREP day []
 ; calls to-report SeasonProc_HoPoMoREP to calculate the HoPoMo seasonal
 ; factor on basis of "day" and of a parameter list ("[]"), which is empty in
 ; this case but could contain 5 values: x1..x5
end

;
**

**

to NewEggsProc
 ; CALLED BY WorkerEggLayingProc see: HoPoMo p.222 & p.230, ignoring ELRstoch
 let ELRt_HoPoMo (MAX_EGG_LAYING * (1 - HoPoMo_seasont))
 if EMERGING_AGE <= 0 [set BugAlarm true show "EMERGING_AGE <= 0"]
 let ELRt_IH (TotalIHbees
 + TotalForagers * FORAGER_NURSING_CONTRIBUTION)
 * MAX_BROOD_NURSE_RATIO / EMERGING_AGE
 ; EMERGING_AGE = 21: total developmental time of worker brood

 let ELRt ELRt_HoPoMo
 ; egg laying rate follows a seasonal pattern as described in
 ; HoPoMo (Schmickl & Crailsheim 2007)

 if EggLaying_IH = true and ELRt_IH < ELRt_HoPoMo
 ; if EggLaying_IH SWITCH is on and not enough nurse bees are available,
 ; the egg laying rate is reduced to ELRt_IH
 [
 set ELRt ELRt_IH
]

 if ELRt > MAX_EGG_LAYING
 [
 set ELRt MAX_EGG_LAYING
]

 ; LIMITED BROOD NEST:
 if TotalWorkerAndDroneBrood + ELRt > MAX_BROODCELLS
 [
 set ELRt MAX_BROODCELLS - TotalWorkerAndDroneBrood
]

 set NewWorkerEggs round ELRt ; ROUND! in contrast to HoPoMo

 ; CALCULATION OF DRONE EGGS:
 set NewDroneEggs floor(NewWorkerEggs * DRONE_EGGS_PROPORTION)
 if Day >= SEASON_STOP
 - (DRONE_HATCHING_AGE
 - DRONE_PUPATION_AGE
 - DRONE_EMERGING_AGE)
 [
 set NewDroneEggs 0
] ; no more drone brood at end of season (however: Season set to day 1 - 365)

 ; AGEING OF QUEEN - based on deGrandi-Hofmann, BEEPOP:
 if QueenAgeing = true ; GUI: "switch"
 [
 let potentialEggs (MAX_EGG_LAYING
 + (-0.0027 * Queenage ^ 2)

 + (0.395 * Queenage))
 ; Beepops potential egglaying Pt
 set NewWorkerEggs round (NewWorkerEggs * (potentialEggs / MAX_EGG_LAYING))
]

 ; no egg-laying of young queen (also if QUEEN_AGEING = false!):
 ask signs with [shape = "queenx"] [hide-turtle] ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 if Queenage <= 10
 [
 set NewWorkerEggs 0
 ; Winston p. 203: 5-6d until sexually mature, 2-4d for orientation and mating flight, mating
 ; can be postponed for 4 weeks if weather is bad

 set NewDroneEggs 0
 ask signs with [shape = "queenx"] [show-turtle] ; ***NEW FOR BEEHAVE_BEEMAPP2015***
]
 if NewWorkerEggs < 0 [set NewWorkerEggs 0]
 if NewDroneEggs < 0 [set NewDroneEggs 0]
end

;
**
**

to SwarmingProc

 ; # total brood triggers swarming
 ; PRE_SWARMING_PERIOD: 3d of preparation before swarming
 ; SwarmingDate: set to 0 in Param.Proc and in SwarmingProc (after swarming and on day 365)

 let fractionSwarm 0.6 ; 0.6 ; Winston p. 187
 let broodSwarmingTH 17000 ; Fefferman & Starks 2006 (model)
 let lastSwarmingDate 199; Winston 1980: prime: 14.05.(134) after swarm: 18.07.(199)
 ; McLellan, Rowland 1986: 162 (modelled),
 if TotalWorkerAndDroneBrood > broodSwarmingTH and SwarmingDate = 0 and day <=
(lastSwarmingDate - PRE_SWARMING_PERIOD)
 [
 set SwarmingDate (day + PRE_SWARMING_PERIOD)
]

 if day = SwarmingDate
 and Swarming = "Swarm control"
 [
 output-type "Swarming (prevented) on day: " output-print day
]

 if day >= SwarmingDate - PRE_SWARMING_PERIOD
 and day <= SwarmingDate
 [
 if Swarming = "Swarming (parental colony)"

 [; Swarm PREPARATION of PARENTAL colony:
 set NewDroneEggs 0
 set NewWorkerEggs 0
 if day = SwarmingDate
 [; SWARMING of PARENTAL colony:
 set Queenage -7
 ; a new queen is left in the hive, still in a capped cell, ca. 7d
 ; before she emerges (Winston p. 187)

 ; Winston p. 185: 36mg honey is taken by a swarming bee:
 set HoneyEnergyStore HoneyEnergyStore
 - ((TotalForagers + TotalIHbees) * 0.036 * ENERGY_HONEY_per_g)
 * fractionSwarm

 ; (1-fractionSwarm) of all healthy & infected in-hive bees stay in the hive:
 ask IHbeeCohorts
 [
 set number_Healthy round (number_Healthy * (1 - fractionSwarm))
 set number_infectedAsPupa round (number_infectedAsPupa * (1 - fractionSwarm))
 set number_infectedAsAdult round (number_infectedAsAdult * (1 - fractionSwarm))
 set number number_Healthy + number_infectedAsPupa + number_infectedAsAdult
]

 ; (1-fractionSwarm) of all healthy & infected drones stay in the hive:
 ask droneCohorts
 [
 set number_Healthy round (number_Healthy * (1 - fractionSwarm))
 set number_infectedAsPupa round (number_infectedAsPupa * (1 - fractionSwarm))
 set number number_Healthy + number_infectedAsPupa
]

 ; fractionSwarm foragers leave the colony and are considered to be dead in the model:
 ask foragerSquadrons
 [
 if random-float 1 < fractionSwarm [die]
] ; LEAVING foragers are treated as being dead

 ; the phoretic mite population in the hive is reduced:
 set PhoreticMites round (PhoreticMites * (1 - fractionSwarm))
 output-type "Swarming on day: " output-print day
 set SwarmingDate 0 ; allows production of after swarms
]
]

 if Swarming = "Swarming (prime swarm)"
 [; Swarm PREPARATION of PRIME SWARM:
 set NewDroneEggs 0
 set NewWorkerEggs 0
 if day = SwarmingDate
 [; Swarming of PRIME SWARM:

 ask (turtle-set eggCohorts larvaeCohorts droneEggCohorts droneLarvaeCohorts)
 [; all brod is left behind and hence removed from the smulation:
 set number 0
]
 ask (turtle-set pupaeCohorts dronePupaeCohorts)
 [
 set number 0
 set number_infectedAsPupa 0
 set number_healthy 0
]
 set NewWorkerLarvae 0
 set NewDroneLarvae 0
 set NewWorkerPupae 0
 set NewDronePupae 0
 ask IHbeeCohorts
 [; fractionSwarm of all healthy & infected in-hive bees join the swarm
 set number_Healthy round (number_Healthy * fractionSwarm)
 set number_infectedAsPupa round (number_infectedAsPupa * fractionSwarm)
 set number_infectedAsAdult round (number_infectedAsAdult * fractionSwarm)
 set number number_Healthy + number_infectedAsPupa + number_infectedAsAdult
]

 ask droneCohorts
 [; fractionSwarm of all healthy & infected drones join the swarm
 set number_Healthy round (number_Healthy * fractionSwarm)
 set number_infectedAsPupa round (number_infectedAsPupa * fractionSwarm)
 set number number_Healthy + number_infectedAsPupa
]

 ask foragerSquadrons
 [; (1 - fractionSwarm) foragers do not join the swarm and hence die (in the model):
 if random-float 1 < (1 - fractionSwarm) [die]
]

 ask miteOrganisers [die]
 ; mites in brood cells are left behind in the old colony

 ; the phoretic mite population in the swarm is reduced:
 set PhoreticMites round (PhoreticMites * fractionSwarm)
 set PollenStore_g 0
 set HoneyEnergyStore
 ((TotalForagers + TotalIHbees)
 * 36 * ENERGY_HONEY_per_g) / 1000
 ; Winston p. 185: 36mg honey per bee during swarming
 output-type "Swarming on day: "
 output-print day
 set SwarmingDate 0 ; allows production of after swarms
] ; if day = SwarmingDate ..
] ; if Swarming = "Swarming (prime swarm)" ,,
] ; if SwarmingDate > 0 and ..

 if Swarming = "Swarm (daughter colony)"
 and day > SwarmingDate
 and day <= SwarmingDate + POST_SWARMING_PERIOD ; DAUGHTER COLONY AFTER SWARMING
(0d period)
 [; no eggs can be laid, no food stored, as long as they have no new home..
 set NewDroneEggs 0
 set NewWorkerEggs 0
 set PollenStore_g 0
 set Aff MAX_AFF
 if HoneyEnergyStore >
 (((TotalForagers + TotalIHbees) * CROPVOLUME) / 1000)
 * 1.36 * ENERGY_HONEY_per_g
 [
 set HoneyEnergyStore (((TotalForagers + TotalIHbees) *
 CROPVOLUME) / 1000) * 1.36 * ENERGY_HONEY_per_g
]
]
 ; resetting SwarmingDate to zero at the end of a year:
 if day = 365 [set SwarmingDate 0]
end

;
**
**

to WorkerEggLayingProc ; creation of worker eggs
 create-eggCohorts 1 ;
 [
 set shape "circle"
 set number NewWorkerEggs
 set age 0
 setxy 3 0
 set color blue
 set ploidy 2
]
end

;
**
**

to DroneEggLayingProc ; creation of drone eggs
 create-DroneEggCohorts 1 ;
 [
 set shape "circle"
 set number NewDroneEggs
 if Day < DRONE_EGGLAYING_START or Day > DRONE_EGGLAYING_STOP [set number 0]
 set age 0
 setxy -5 0

 set color blue
 set ploidy 1
]
end

;
**
**

to WorkerEggsDevProc ; ageing, deletion of oldest cohort
 ask eggCohorts
 [
 set age age + 1
 fd 1 ; turtle moves one step (display)
 set number (number - random-poisson (number * MORTALITY_EGGS))
 if number < 0 [set number 0]
 ; random mortality, based on Poisson distribution

 if age = HATCHING_AGE [set NewWorkerLarvae number]
 if age >= HATCHING_AGE [die]
]
end

;
**
**

to DroneEggsDevProc ; ageing, deletion of oldest cohort
 ask droneEggCohorts
 [
 set age age + 1
 set number (number - random-poisson (number * MORTALITY_DRONE_EGGS))
 if number < 0 [set number 0] ; random mortality, based on Poisson distribution
 if age = DRONE_HATCHING_AGE [set NewDroneLarvae number]
 if age >= DRONE_HATCHING_AGE [die]
 fd 1 ; turtle moves one step (display)
]
end

;
**
**

to NewWorkerLarvaeProc ; creation of worker larvae
 create-larvaeCohorts 1
 [
 set number NewWorkerLarvae ; the cohort size
 set age HATCHING_AGE

 set shape "circle" ; shape
 set color yellow
 setxy 3 (- age)
 set ploidy 2 ; worker larvae are diploid
]
end

;
**
**

to NewDroneLarvaeProc ; creation of drone larvae
 create-droneLarvaeCohorts 1
 [
 set shape "circle"
 set number NewDroneLarvae ; the cohort size
 set age DRONE_HATCHING_AGE
 set color yellow
 setxy -5 (- age)
 set ploidy 1 ; drone larvae are haploid
]
end

;
**
**

to WorkerLarvaeDevProc ; ageing of cohort
 ask larvaeCohorts
 [
 set age age + 1
 fd 1 ; turtle moves one step (display)
 set numberDied 0
 set numberDied random-poisson (number * MORTALITY_LARVAE)
 if numberDied > number [set numberDied number]
 ; random mortality, based on Poisson distribution

 set number number - numberDied
 if (numberDied > 0)
 and (age > INVADING_WORKER_CELLS_AGE)
 and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy numberDied "dyingBrood"
]

 if age = PUPATION_AGE
 [
 set NewWorkerPupae number
 set SaveWhoWorkerLarvaeToPupae who ; "Who" is stored as a global variable

 set SaveInvadedMOWorkerLarvaeToPupae invadedByMiteOrganiserID
]
 if age >= PUPATION_AGE [die]
]
end

;
**
**

to DroneLarvaeDevProc ; ageing of cohort
 ask droneLarvaeCohorts
 [
 set age age + 1
 set numberDied 0
 set numberDied random-poisson (number * MORTALITY_DRONE_LARVAE)
 if numberDied > number [set numberDied number]
 ; random mortality, based on Poisson distribution
 set number number - numberDied

 if (numberDied > 0)
 and (age > INVADING_DRONE_CELLS_AGE)
 and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy numberDied "dyingBrood"
] ; variables correspond to [miteOrganiserID ploidyMO diedBrood]

 fd 1
 if age = DRONE_PUPATION_AGE
 [
 set NewDronePupae number
 set SaveWhoDroneLarvaeToPupae who ; "Who" is stored as a global variable
 set saveInvadedMODRONELarvaeToPupae invadedByMiteOrganiserID
]
 if age >= DRONE_PUPATION_AGE [die]
]
end

;
**
**

to NewWorkerPupaeProc
 create-pupaeCohorts 1
 [
 set shape "circle" ; shape of the turtle as shown in the GUI
 set number NewWorkerPupae ; cohort size
 set number_healthy number ; all newly created pupae are healthy
 set age PUPATION_AGE ; age of the cohort

 setxy 3 (- age) ; xy position of the turtle in the Netlogo world
 set color brown ; color of the turtle
 set ploidy 2 ; worker pupae are diploid
 set invadedByMiteOrganiserID SaveInvadedMOWorkerLarvaeToPupae
 ; saves "invadedByMiteOrganiserID" of the old larvaeCohort that has now developed
 ; into a pupaeCohort
 let saveWho who
 ; saves "who" for the following command (transition of larvae to pupae results in the
 ; death of larvae turtles, hence: ensuing pupae turtles have a different "who")
 ask miteOrganisers with [invadedWorkerCohortID = SaveWhoWorkerLarvaeToPupae]
 [
 set invadedWorkerCohortID saveWho
] ; miteOrganiser updates its value for the invadedWorkerCohortID
]
end

;
**
**

to NewDronePupaeProc
 create-dronePupaeCohorts 1
 [
 set shape "circle"
 set number NewDronePupae
 set number_healthy number ; all newly created pupae are healthy
 set age DRONE_PUPATION_AGE
 setxy -5 (- age)
 set color brown
 set ploidy 1
 set invadedByMiteOrganiserID SaveInvadedMODroneLarvaeToPupae
 ; saves "invadedByMiteOrganiserID" of the old larvaeCohort that has
 ; now developed into a pupaeCohort

 let saveWho who
 ; saves "who" for the next line (transition of larvae to pupae results
 ; in the death of larvae turtles, hence: ensuing pupae turtles
 ; have a different "who")

 ask miteOrganisers with [invadedDroneCohortID = SaveWhoDroneLarvaeToPupae]
 [
 set invadedDroneCohortID saveWho
] ; miteOrganiser updates its value for the invadedDroneCohortID
]
end

;
**
**

to WorkerPupaeDevProc
 ; ageing of cohort, oldest cohort may emerge and release mites
 ask pupaeCohorts
 [
 set age age + 1
 fd 1
 set numberDied 0
 set numberDied random-poisson (number * MORTALITY_PUPAE)
 if numberDied > number [set numberDied number]
 ; random mortality, based on Poisson distribution
 set number number - numberDied
 set number_healthy number_healthy - numberDied
 ; all pupae are healthy as infection takes place (in the model)
 ; at emergence - and if not..

 if number_infectedAsPupa > 0
 [
 set BugAlarm true
 show "BUG ALARM!!! number_infectedAsPupa > 0 in WorkerPupaeDevProcs!"
] ; .. raise a bug alarm!

 if (numberDied > 0) and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy numberDied "dyingBrood"
] ; variables correspond to [miteOrganiserID ploidyMO diedBrood]

 if age = EMERGING_AGE
 [
 if (number > 0) and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID 2 0 "emergingBrood"
] ; invadedByMiteOrganiserID ploidy = 2 numberDied = 0

 set NewIHbees number
 set NewIHbees_healthy number_healthy
]

 if age >= EMERGING_AGE [die]
]
end

;
**
**

to DronePupaeDevProc
 ; ageing of cohort, oldest cohort may emerge and release mites
 ask dronePupaeCohorts
 [
 set age age + 1

 fd 1 ; turtle moves one step (display)
 set numberDied 0
 set numberDied random-poisson (number * MORTALITY_DRONE_PUPAE)
 if numberDied > number [set numberDied number]
 set number number - numberDied
 set number_healthy number_healthy - numberDied
 ; all pupae are healthy as infection takes place (in the model) at
 ; emergence - and if not..

 if number_infectedAsPupa > 0
 [
 set BugAlarm true
 show "BUG ALARM!!! number_infectedAsPupa > 0 in DronePupaeDevProcs!"
] ; .. raise a bug alarm!
 if (numberDied > 0) and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy numberDied "dyingBrood"
] ; variables correspond to [miteOrganiserID ploidyMO diedBrood]
 if age = DRONE_EMERGING_AGE
 [
 if (number > 0) and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID 1 0 "emergingBrood"
] ; invadedByMiteOrganiserID ploidy = 1 numberDied = 0
 set NewDrones number
 set NewDrones_healthy number_healthy]
 if age >= DRONE_EMERGING_AGE [die]
]
end

;
**
**

to NewIHbeesProc
 create-IHbeeCohorts 1
 [
 set shape "circle"
 set number NewIHbees ; all new IH bees
 set number_healthy NewIHbees_healthy ; new, healthy IH bees
 set number_infectedAsPupa number - number_healthy
 ; the others were infected during pupal phase

 set number_infectedAsAdult 0
 ; adult workers hadn't had any chance to become infected so far..

 set age 0
 set color orange
 setxy 3 (- age - EMERGING_AGE - 1)
 set ploidy 2

]
end

;
**
**

to NewDronesProc
 create-DroneCohorts 1
 [
 set shape "circle"
 set number NewDrones ; all new drones
 set number_healthy NewDrones_healthy ; new, healthy drones
 set number_infectedAsPupa number - number_healthy ; the others are infected
 set age 0
 set color grey
 setxy -5 (- age - DRONE_EMERGING_AGE - 1)
 set ploidy 1
]
end

;
**
**

to AffProc
 ; calculates the actual age of first foraging on basis of nectar stores and
 ; brood/nurse ratio - called by WorkerIHbeesDevProc

 let affYesterDay Aff ; the current (= yesterday's) Aff is saved
 let pollenTH 0.5
 let proteinTH 1
 let honeyTH 35 * (DailyHoneyConsumption / 1000) * ENERGY_HONEY_per_g
 ; min. desired honey store lasts for 35 days (arbitrarily chosen)
 let broodTH 0.1
 let foragerToWorkerTH 0.3 ; like in Beshers et al. 2001

 ; POLLEN criterion:
 if PollenStore_g / IdealPollenStore_g < pollenTH [set Aff Aff - 1]

 ; PROTEIN criterion:
 if proteinFactorNurses < proteinTH [set Aff Aff - 1]

 ; HONEY criterion:
 if HoneyEnergyStore < honeyTH [set Aff Aff - 2]

 ; FORAGER TO WORKER criterion:
 if (TotalIHbees > 0)
 and (TotalForagers / TotalIHbees < foragerToWorkerTH)

 [
 set Aff Aff - 1
]

 ; BROOD TO NURSES criterion:
 if ((TotalIHbees
 + TotalForagers * FORAGER_NURSING_CONTRIBUTION) * MAX_BROOD_NURSE_RATIO)
 > 0
 and
 TotalWorkerAndDroneBrood / ((TotalIHbees
 + TotalForagers * FORAGER_NURSING_CONTRIBUTION) * MAX_BROOD_NURSE_RATIO)
 > broodTH
 [
 set Aff Aff + 2
]

 ; to reduce strong deviations from the base Aff:
 if affYesterDay < AFF_BASE - 7 [set Aff Aff + 1]
 if affYesterDay > AFF_BASE + 7 [set Aff Aff - 1]

 ; Aff can be changed only by +-1 per day:
 if Aff < affYesterDay [set Aff affYesterDay - 1]
 if Aff > affYesterDay [set Aff affYesterDay + 1]

 ; MIN and MAX values for Aff:
 if Aff < MIN_AFF [set Aff MIN_AFF]
 if Aff > MAX_AFF [set Aff MAX_AFF]

end

;
**
**

to WorkerIHbeesDevProc
 ; ageing of IH bees, mortality for healthy and infected IH-workers,
 ; calls CalculateAffProc, calculation of # new foragerSquadrons

 let overagedIHbees 0
 ; bees with age > Aff but have to remain in the last IH cohort, as number < SQUADRON_SIZE

 AffProc
 ; in the AffProc today's age of first foraging (Aff) is calculated
 foreach reverse sort IHbeeCohorts
 ; cohorts have to be asked in order of their age (i.e. in reverse order of
 ; their "who") otherwise over-aged bees vanish with a 50% chance
 [
 ask ?
 [

 let deathsCounter 0
 ; # of bees dying in this cohort at current time step

 set age age + 1
 fd 1 ; turtle moves one step (display)

 ; MORTALITY
 ; healthy bees:
 set deathsCounter random-poisson (number_healthy * MORTALITY_INHIVE)
 if deathsCounter > number_healthy [set deathsCounter number_healthy]
 ; random mortality, based on Poisson distribution

 set number_healthy number_healthy - deathsCounter
 ; deathCounter: dead HEALTHY bees

 ; infectedAsPupa:
 set deathsCounter
 random-poisson (number_infectedAsPupa * MORTALITY_INHIVE_INFECTED_AS_PUPA)
 if deathsCounter > number_infectedAsPupa
 [
 set deathsCounter number_infectedAsPupa
] ; random mortality, based on Poisson distribution

 set number_infectedAsPupa number_infectedAsPupa - deathsCounter
 ; deathCounter now: dead INFECTED bees

 ; infectedAsAdults:
 set deathsCounter
 random-poisson (number_infectedAsAdult * MORTALITY_INHIVE_INFECTED_AS_ADULT)
 if deathsCounter > number_infectedAsAdult
 [
 set deathsCounter number_infectedAsAdult
] ; random mortality, based on Poisson distribution
 set number_infectedAsAdult number_infectedAsAdult - deathsCounter
 ; deathCounter now: dead INFECTED bees

 set deathsCounter number - number_healthy
 - number_infectedAsPupa - number_infectedAsAdult
 ; deathCounter is now set to the TOTAL number of dead bees

 set number number - deathsCounter
 ; # of bees in this cohort is reduced by # of dead bees

 set DeathsAdultWorkers_t DeathsAdultWorkers_t
 + deathsCounter
 ; sums up # of adult workers dying in current timestep to calculate
 ; mean lifespan of adult bees

 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t
 + (deathsCounter * age)
 ; sums up lifespan of adult workers dying in current timestep

 set InhivebeesDiedToday DeathsAdultWorkers_t

 ; ONSET OF FORAGING
 if age >= Aff
 [
 ; new healthy foragerSquadrons:
 set NewForagerSquadronsHealthy
 floor (number_healthy / SQUADRON_SIZE) + NewForagerSquadronsHealthy
 set overagedIHbees number_healthy mod SQUADRON_SIZE
 ask IHbeeCohorts with [age = Aff - 1]
 [
 set number number + overagedIHbees
 set number_healthy number_healthy + overagedIHbees
]
 ; overaged bees would vanish here without "reverse sort", as there
 ; might be no IHbeeCohort with age = Aff - 1! (50% chance)

 ; new foragerSquadrons, which were infected as pupae:
 set NewForagerSquadronsInfectedAsPupae
 floor (number_infectedAsPupa / SQUADRON_SIZE)
 + NewForagerSquadronsInfectedAsPupae

 set overagedIHbees number_infectedAsPupa mod SQUADRON_SIZE
 ask IHbeeCohorts with [age = Aff - 1]
 [
 set number number + overagedIHbees
 set number_infectedAsPupa number_infectedAsPupa + overagedIHbees
]
 ; overaged bees would vanish here without "reverse sort", as there might
 ; be no IHbeeCohort with age = Aff - 1! (50% chance)

 ; new infectedAsAdults foragerSquadrons:
 set NewForagerSquadronsInfectedAsAdults
 floor (number_infectedAsAdult / SQUADRON_SIZE)
 + NewForagerSquadronsInfectedAsAdults

 set overagedIHbees number_infectedAsAdult mod SQUADRON_SIZE
 ask IHbeeCohorts with [age = Aff - 1]
 [
 set number number + overagedIHbees
 set number_infectedAsAdult number_infectedAsAdult + overagedIHbees
]
 ; overaged bees would vanish here without "reverse sort", as there might
 ; be no IHbeeCohort with age = Aff - 1! (50% chance)
]
 if age >= Aff
 [
 set plabel ""
 die
]

] ; ask ?
] ; foreach reverse sort IHbeeCohorts
end

;
**
**

to DronesDevProc
 ; ageing of cohort, mortality for healthy and infected drones
 ask DroneCohorts [
 fd 1
 set age age + 1

 ; MORTALITY:
 set number_healthy (number_healthy -
 random-poisson (number_healthy * MORTALITY_DRONES))
 if number_healthy < 0 [set number_healthy 0]

 set number_infectedAsPupa
 (number_infectedAsPupa
 - random-poisson (number_infectedAsPupa * MORTALITY_DRONES_INFECTED_AS_PUPAE))

 if number_infectedAsPupa < 0 [set number_infectedAsPupa 0]
 set number number_healthy + number_infectedAsPupa
 ; total number of drones = healthy + infected drones
 if age >= DRONE_LIFESPAN [die]
]
end

;
**
**

to BroodCareProc
 ; checks if enough nurses are present and, if not, kills excess of drone and
 ; worker brood; order of dying: 1. droneEggCohorts 2. droneLarvaeCohorts
 ; 3. eggCohorts 4. larvaeCohorts 5. dronePupaeCohorts 6. pupaeCohorts

 let lackNurses false
 ; all kind of brood might die due to lack of nurse bees..
 let lackProtein false
 ; .. or (drone&worker) LARVAE may die due to lack of protein in brood food

 if ticks > 1 [CountingProc]
 ; current # of IH-bees and brood, cannot be called in time step 1, as
 ; counting foragerSquadrons results wrongly in 0

 set ExcessBrood

 ceiling (TotalWorkerAndDroneBrood
 - (TotalIHbees + TotalForagers * FORAGER_NURSING_CONTRIBUTION)
 * MAX_BROOD_NURSE_RATIO)
 ; rounded up! totalWorkerDroneBrood: all brood stages of drones & workers;
 ; Nursing: also foragers are assumed to contribute (partly) to brood care

 ifelse ExcessBrood > 0
 [
 set lackNurses true
 ask signs with [shape = "beelarva_x2"]
 [
 show-turtle
 set label ExcessBrood
]
]
 [
 ask signs with [shape = "beelarva_x2"]
 [
 hide-turtle
]
]

 let starvedBrood ceiling ((TotalDroneLarvae + TotalLarvae) * (1 - ProteinFactorNurses))
 ; larvae require protein and may die if jelly contains not enough proteins

 if starvedBrood > 0 [set lackProtein true]
 if starvedBrood > ExcessBrood [set ExcessBrood starvedBrood]
 ; excess of brood is either determined by lack of nurses or lack of protein

 set LostBroodToday LostBroodToday + ExcessBrood
 set LostBroodTotal LostBroodTotal + ExcessBrood
 let stillToKill ExcessBrood
 ; keeps track of the amount of brood that is still to be killed

 if ExcessBrood > 0
 [; whenever a brood cell dies, the corresponding miteOrganiser is updated in the
 ; releaseMitesProc! (only for pupae and oldest larvae as eggs and young larvae are
 ; not invaded by mites

 if lackNurses = true
 [
 foreach reverse sort DroneEggCohorts
 [
 ask ? ; young drone eggs die first if not enough nurses are available
 [while [(stillToKill * number) > 0]
 [
 set number number - 1
 set stillToKill stillToKill - 1
]
]
]

]

 if lackNurses = true or lackProtein = true
 [
 foreach reverse sort DroneLarvaeCohorts
 [
 ask ?
 [
 while [(stillToKill * number) > 0]
 [set number number - 1 set stillToKill stillToKill - 1
 if age > INVADING_DRONE_CELLS_AGE and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy 1 "dyingBrood"
]
 ; Died brood: always 1! calls releaseMitesProc and transfers variables
 ; (correspond to [miteOrganiserID ploidyMO diedBrood])
]
]
]
] ; if lackNurses = true or lackProtein = true

 if lackNurses = true
 [
 foreach reverse sort EggCohorts
 [
 ask ?
 [
 while [(stillToKill * number) > 0]
 [
 set number number - 1
 set stillToKill stillToKill - 1
]
]
]
] ;if lackNurses = true
 ; (stillToKill * number): BOTH, number AND stillToKill have to be > 0 to continue "while"

 if lackNurses = true or lackProtein = true
 [
 foreach reverse sort larvaeCohorts
 [
 ask ?
 [
 while [(stillToKill * number) > 0]
 [
 set number number - 1 set stillToKill stillToKill - 1
 if age > INVADING_WORKER_CELLS_AGE and (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy 1 "dyingBrood"
]
 ; calls releaseMitesProc and transfers variables (correspond

 ; to [miteOrganiserID ploidyMO diedBrood])
]
]
]
] ; if lackNurses = true or lackProtein = true

 if lackNurses = true
 [
 foreach reverse sort DronePupaeCohorts
 [
 ask ?
 [
 while [(stillToKill * number) > 0]
 [
 ifelse random number <= number_healthy ; choose a random pupal cell
 [set number_healthy number_healthy - 1 set number number - 1]
 ; IF pupa is healthy, then number_healthy and (total) number are decreased by one
 [set number_infectedAsPupa number_infectedAsPupa - 1 set number number - 1]
 ; ELSE number_infectedAsPupa and (total) number are decreased by one
 set stillToKill stillToKill - 1
 if (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy 1 "dyingBrood"
]
]
]
]
] ; if lackNurses = true

 if lackNurses = true
 [
 foreach reverse sort pupaeCohorts
 [
 ask ?
 [
 while [(stillToKill * number) > 0]
 [
 ifelse random number <= number_healthy ; choose a random pupal cell
 [set number_healthy number_healthy - 1 set number number - 1]
 ; IF pupa is healthy, then number_healthy and (total) number are decreased by one
 [set number_infectedAsPupa number_infectedAsPupa - 1 set number number - 1]
 ; ELSE number_infectedAsPupa and (total) number are decreased by one
 set stillToKill stillToKill - 1
 if (TotalMites > 0)
 [
 MitesReleaseProc invadedByMiteOrganiserID ploidy 1 "dyingBrood"
]
]
]
]
] ; if lackNurses = true

 if stillToKill > 0
 [
 set BugAlarm true
 output-show (word ticks " BUG ALARM! stillToKill > 0")
]
] ; end IF ExcessBrood > 0

end

;
**
**

to DrawIHcohortsProc
 ; # bees in IH cohorts (workers & drones, brood & adults) are drawn as coloured bars

 ask (turtle-set eggCohorts larvaeCohorts pupaeCohorts)
 [; WORKERS
 set heading 90
 fd 1
 repeat ceiling(10 * number / STEPWIDTH)
 [
 fd 0.1
 set pcolor color
]
 set heading 180 setxy 3 (- age)
]

 ask IHbeeCohorts
 [
 set heading 90
 fd 1
 repeat ceiling(10 * number_healthy / STEPWIDTH)
 [
 fd 0.1
 set pcolor color
]
 repeat ceiling(10 * number_infectedAsAdult / STEPWIDTH)
 [
 fd 0.1
 set pcolor (color - 1)
]
 repeat ceiling(10 * number_infectedAsPupa / STEPWIDTH)
 [
 fd 0.1
 set pcolor (color - 2)
]
 set heading 180
 setxy 3 (- age - EMERGING_AGE - 1)

] ; ask IHbeeCohorts

 ask (turtle-set droneEggCohorts droneLarvaeCohorts dronePupaeCohorts) ; DRONES
 [
 set heading 270
 repeat ceiling(number / STEPWIDTHdrones)
 [
 fd 1
 set pcolor color
]
 set heading 180
 setxy -5 (- age)
]

 ask DroneCohorts
 [
 set heading 270 repeat ceiling(number_healthy / STEPWIDTHdrones)
 [
 fd 1
 set pcolor color
]
 repeat ceiling(number_infectedAsPupa / STEPWIDTHdrones)
 [
 fd 1
 set pcolor (color - 2)
]
 set heading 180
 setxy -5 (- age - DRONE_EMERGING_AGE - 1)
]
end

;
**
**

;
==
==
=========
; =============== IBM FORAGING SUBMODEL ======================== IBM FORAGING
SUBMODEL ==================================== IBM FORAGING SUBMODEL
=======================
;
==
==
=========

;
**
**

;
**
**

to Start_IBM_ForagingProc
 ; controls the number of foraging trips per day, calls ForagingRoundProc

 let continueForaging true
 ; foraging is continued until it is stopped
 let meanTripDuration 0
 let summedTripDuration 0
 let HANGING_AROUND SEARCH_LENGTH_M / FLIGHT_VELOCITY
 ; [s] duration of a foraging round if all foragers are resting
 ; (= time for unsuccessful search flight)
 let ageLaziness 100
 ; [d] min. age to allow foragers being lazy
 ForagersDevelopmentProc
 ; called before creation of new foragers to avoid ageing by 2d at creation

 NewForagersProc
 ask foragerSquadrons
 [; Laziness: lazy bees won't forage and can't be recruited on that day.
 ; applies only to older bees and if the honey store is not too small
 if age >= ageLaziness and
 random-float 1 < ProbLazinessWinterbees and ; ProbLazinessWinterbees: default: 0!
 random-float 1 < (HoneyEnergyStore / DecentHoneyEnergyStore)
 [
 set activity "lazy"
]
]

 set ForagingSpontaneousProb Foraging_ProbabilityREP
 ; the probability for a resting forager to start spontaneously foraging in a single foraging
 ; round today is calculated in "to-report Foraging_ProbabilityREP "

 set ForagingRounds 0
 ; counter of the foraging rounds
 ask foragerSquadrons
 [
 set activityList []
 ; activityList records all activities of a forager during the day
]

 ; always "season" as SEASON_START = 1 & SEASON_STOP = 365
 if (Day >= SEASON_START)

 and (Day <= SEASON_STOP)
 ; foraging takes only place during season and while honey store not
 ; (almost) full (0.95: to avoid foraging, when honey cannot be stored)..
 and
 (HoneyEnergyStore < 0.95 * MAX_HONEY_ENERGY_STORE
 or PollenStore_g < IdealPollenStore_g)
 ; ..or when pollen is needed
 and DailyForagingPeriod > 0

 [
 while [continueForaging = true]
 ; .. and only for a certain time (=DailyForagingPeriod), which is checked
 ; via "continueForaging"
 [
 ask foragerSquadrons
 [
 set activityList lput ForagingRounds activityList
 ; the ForagingRounds is added to a foragers activityList
]
 ForagingRoundProc
 ; call ForagingRoundProc, which calls all procedures involved in foraging

 set ForagingRounds ForagingRounds + 1
 ; # foraging rounds is increased

 ifelse ColonyTripForagersSum > 0
 [set meanTripDuration ColonyTripDurationSum / ColonyTripForagersSum]
 ; IF > 0 (i.e. if at least 1 foraging trip has taken place): calculate the average time
 ; a forager needed for its trip in this round
 [set meanTripDuration HANGING_AROUND]
 ; ELSE: if no one goes foraging: foraging round lasts "HANGING_AROUND" seconds

 set summedTripDuration (summedTripDuration + meanTripDuration)
 ; mean trip durations are summed up

 ; if the duration of all foraging rounds summed up is larger than DailyForagingPeriod
 ; then foraging ends for today
 if summedTripDuration >= DailyForagingPeriod
 [
 set continueForaging false
] ; until the total time >= DailyForagingPeriod

 if ((Details = true) and (continueForaging = true))
 [
 if WriteFile = true [WriteToFileProc]
]
 ; if Details & WriteFile true: results are recorded in Output file after each foraging round (trip)
]
]

 ForagersLifespanProc

 ; mortality of foragers due to max. lifespan, max. km or in-hive mortality risk

 ask foragerSquadrons
 [
 set activity "resting"
 set activityList lput "End" activityList
] ; after foraging is completed for today, all foragers do rest
end;

;
**
**

; ************** PARAMETERIZATION FLOWER PATCH
** PARAMETERIZATION FLOWER
PATCH ***

;
**
**

to CreateFlowerPatchesProc
 ; creates 2 flower patches ("red" & "green"),

 set N_FLOWERPATCHES 2 ; 2
 if readInfile = true
 [
 set bugAlarm true
 show "BugAlarm in CreateFlowerPatchesProc! Check read-in!"
]
 create-flowerPatches N_FLOWERPATCHES
 [
 set patchType "GreenField"
 set distanceToColony DISTANCE_G ;1500 ; [m]
 set xcorMap distanceToColony
 set size_sqm 100000
 set quantityMyl QUANTITY_G_l * 1000 * 1000; [microlitres]
 set amountPollen_g POLLEN_G_kg * 1000 ;10000 ; 10kg = 10000g
 ; total amount of pollen available at this patch

 if SeasonalFoodFlow = true
 [
 set quantityMyl FlowerPatchesMaxFoodAvailableTodayREP who "Nectar"
 set amountPollen_g FlowerPatchesMaxFoodAvailableTodayREP who "Pollen"
]

 set nectarConcFlowerPatch CONC_G
 ; mean nectar concentration returned to colony ca. 1.4 (assessed from Seeley (1986), Fig 2)

 set detectionProbability DETECT_PROB_G
 set shape "fadedFlower"
 set color green
 set size 4
 ifelse distanceToColony <= 5500
 [setxy (15.1 + (distanceToColony / 250)) 3] ; IF (distance)
 [setxy 39.5 3] ; ELSE (distance)
] ; create-flowerPatches N_FLOWERPATCHES

 ask flowerPatch 0
 [
 set patchType "RedField"
 set distanceToColony DISTANCE_R ; [m] ; RED PATCH
 set xcorMap -1 * distanceToColony
 set quantityMyl QUANTITY_R_l * 1000 * 1000 ; [microlitres]
 set amountPollen_g POLLEN_R_kg * 1000 ; [g]

 if SeasonalFoodFlow = true
 [
 set quantityMyl FlowerPatchesMaxFoodAvailableTodayREP who "Nectar"
 set amountPollen_g FlowerPatchesMaxFoodAvailableTodayREP who "Pollen"
]

 set nectarConcFlowerPatch CONC_R
 set detectionProbability DETECT_PROB_R
 set color red

 ifelse distanceToColony <= 5500
 [setxy (14.9 - (distanceToColony / 250)) 3]
 [setxy -7.5 3]
]

 FlowerPatchesUpdateProc
end;

;
**
**

; ************** PARAMETERIZATION FLOWER PATCHES FROM FILES
**

;
**
**

to Create_Read-in_FlowerPatchesProc
 ; copy of CreateFlowerPatchesProc but data are read from input file

 ; calculates derived values (e.g. EEF, flight costs etc)

 let counter 0
 set TodaysAllPatchesList []
 ; shorter list, contains data of all patches, but only for today

 set TodaysSinglePatchList []
 ; short list, contains data of a single patch for today

 set counter Day
 ; counter: to chose only the values for today from the complete
 ; (all days, all patches) list

 repeat N_FLOWERPATCHES
 [
 ; todays data for ALL N_FLOWERPATCHES flower patches are saved in a
 ; new, shorter list (= todaysAllPatchesList)

 set TodaysSinglePatchList (item counter AllDaysAllPatchesList)
 ; this new, shorter list (= todaysAllPatchesList) is comprised of very
 ; short lists (=todaysSinglePatchList) that contain only the data of the
 ; current patch and only for today

 set todaysAllPatchesList fput TodaysSinglePatchList todaysAllPatchesList
 ; fput: faster as lput! (Netlogo 4) however: list is in reversed order!

 set counter counter + 365
 create-flowerPatches 1
 [
 set oldPatchID item 2 TodaysSinglePatchList
 ; refers to patch number of crop maps from a landscape module,
 ; an optional external tool to read in and analyse maps of food patches

 set patchType item 3 TodaysSinglePatchList ; e.g. Oilseed rape
 set distanceToColony item 4 TodaysSinglePatchList ; [m]
 set xcorMap item 5 TodaysSinglePatchList ; x coordinate
 set ycorMap item 6 TodaysSinglePatchList ; y coordinate
 set size_sqm item 7 TodaysSinglePatchList ; patch area [m^2]
 set amountPollen_g item 8 TodaysSinglePatchList ; [g]
 set nectarConcFlowerPatch item 9 todaysSinglePatchList ; [mol/l]
 set quantityMyl (item 10 TodaysSinglePatchList) * 1000 * 1000 ; [microlitres]

 let calcDetectProb item 11 TodaysSinglePatchList
 ; calculated in "2_BEEHAVE_FoodFlow"-Tool on basis of distance
 ; (if this input file is created by "BEEHAVE_FoodFlow")

 let modelledDetectProb item 12 TodaysSinglePatchList
 ; modelleded in "3_BEEHAVE_LANDSCAPE" with individual scouts
 ; exploring a 2-dim landscape

 ifelse ModelledInsteadCalcDetectProb = true

 [set detectionProbability modelledDetectProb]
 [set detectionProbability calcDetectProb]

 set shape "flower"
 set size 1 + (sqrt size_sqm) / 1000
 setxy (distanceToColony / 300) 3
]
] ; END of "repeat N_FLOWERPATCHES"
 FlowerPatchesUpdateProc
 set TodaysAllPatchesList reverse TodaysAllPatchesList
 ; to correct the reversed order, caused by the fput command

end;

;
**
**

to FlowerPatchesUpdateProc
 let energyFactor_onFlower 0.2 ; (0.2)
 ; reflects reduced energy consumption while bee is sitting on the flower
 ; to collect nectar or pollen;
 ; Kacelnik et al 1986 (BES:19): 0.3 (rough estimation, based on Nunez 1982)

 ; HANDLING TIME:
 ask flowerPatches
 [
 if ReadInfile = false
 [
 ifelse ConstantHandlingTime = true
 [
 set handlingTimeNectar TIME_NECTAR_GATHERING ; IF: handling time constant
 set handlingTimePollen TIME_POLLEN_GATHERING
]
 [
 if quantityMyl > 0
 [
 set handlingTimeNectar
 TIME_NECTAR_GATHERING *
 ((FlowerPatchesMaxFoodAvailableTodayREP who "Nectar") / quantityMyl)
] ; ELSE: handling time dependent on proportion of nectar or pollen left

 if amountPollen_g > 0
 [
 set handlingTimePollen TIME_POLLEN_GATHERING
 * ((FlowerPatchesMaxFoodAvailableTodayREP who "Pollen") / amountPollen_g)
]
]
] ; if ReadInfile = false

 if ReadInfile = true
 [
 set TodaysSinglePatchList item who TodaysAllPatchesList
 ifelse ConstantHandlingTime = true
 [; IF CONSTANT handling time:
 set handlingTimeNectar item 13 TodaysSinglePatchList
 ; item 13: handling time nectar
 set handlingTimePollen item 14 TodaysSinglePatchList
] ; item 14: handling time pollen
 [
 ; ELSE: if handling time is NOT constant:
 if quantityMyl > 0 ; nectar handling time
 [
 set handlingTimeNectar (
 item 13 TodaysSinglePatchList) *
 ((item 10 TodaysSinglePatchList) * 1000 * 1000) / quantityMyl
] ; item 13: NectarGathering_s, item 10: quantityNectar_l

 if amountPollen_g > 0 ; pollen handling time
 [
 set handlingTimePollen
 (item 14 TodaysSinglePatchList)
 * ((item 8 TodaysSinglePatchList) / amountPollen_g)
] ; item 14: PollenGathering_s; item 8: quantityPollen_g
]
] ; if ReadInfile = true

 ; FLIGHT COSTS & EEF:
 set flightCostsNectar
 (2 * distanceToColony * FLIGHTCOSTS_PER_m)
 + (FLIGHTCOSTS_PER_m * handlingTimeNectar
 * FLIGHT_VELOCITY * energyFactor_onFlower) ; [kJ] = [m*kJ/m + kJ/m * s * m/s]

 set flightCostsPollen
 (2 * distanceToColony * FLIGHTCOSTS_PER_m)
 + (FLIGHTCOSTS_PER_m * handlingTimePollen
 * FLIGHT_VELOCITY * energyFactor_onFlower)

 set EEF ((nectarConcFlowerPatch * CROPVOLUME
 * ENERGY_SUCROSE) - flightCostsNectar) / flightCostsNectar
 ; Energetic Efficiency of the flowerPatch

 ; TRIP DURATION:
 set tripDuration 2 * distanceToColony * (1 / FLIGHT_VELOCITY)
 + handlingTimeNectar
 ; duration of nectar foraging trip depends on speed, 2*distance + time to
 ; collect nectar from the flowers

 set tripDurationPollen 2 * distanceToColony
 * (1 / FLIGHT_VELOCITY) + handlingTimePollen
 ; duration of pollen foraging trip depends on speed, 2*distance + time to

 ; collect pollen from the flowers
 ; MORTALITY:
 set mortalityRisk 1 - ((1 - MORTALITY_FOR_PER_SEC) ^ tripDuration) ; nectar foragers
 set mortalityRiskPollen 1 - ((1 - MORTALITY_FOR_PER_SEC) ^ tripDurationPollen) ; pollen foragers
 ; DANCING:
 set danceCircuits DANCE_SLOPE * EEF + DANCE_INTERCEPT ; derived from Seeley 1994

 if danceCircuits < 0 [set danceCircuits 0]
 if danceCircuits > MAX_DANCE_CIRCUITS [set danceCircuits MAX_DANCE_CIRCUITS]
 ; MAX_DANCE_CIRCUITS: ca. 100 (Seeley, Towne 1992)

 if SimpleDancing = true
 [
 ifelse EEF > 20
 [set danceCircuits 40] ; IF
 [set danceCircuits 0] ; ELSE
]

 if AlwaysDance = true [set danceCircuits 40]
 ; in this case, foragers always dance for their patch,
 ; irrespective of its quality

 set danceFollowersNectar danceCircuits * 0.05
 ; Seeley, Reich, Tautz (2005): "0.05 recruits per waggle run (see Fig. 3)"
] ; ask flowerPatches
end

;
**
**

to ForagingRoundProc
 ; CALLED BY Start_IBM_ForagingProc calls Procedures involved in each foraging trip
 ; and does foraging related plots

 set ColonyTripDurationSum 0
 set ColonyTripForagersSum 0
 ; used to calculated duration of this foraging round
 set DecentHoneyEnergyStore (TotalIHbees + TotalForagers) * 1.5 * ENERGY_HONEY_per_g
 ; DecentHoneyEnergyStore reflects the amount of energy a colony should store
 ; to survive the winter, based on the assumption that a bee consumes ca. 1.5g honey during winter
 if DecentHoneyEnergyStore = 0
 [
 set DecentHoneyEnergyStore 1.5 * ENERGY_HONEY_per_g
] ; to avoid division by 0

 ; Proportion of pollen foragers:
 set ProbPollenCollection (1 - PollenStore_g / IdealPollenStore_g)
 * MAX_PROPORTION_POLLEN_FORAGERS
 ; (Pollen foragers: ~ 0-90% of all foragers: Lindauer 1952)

 if HoneyEnergyStore / DecentHoneyEnergyStore < 0.5
 [
 set ProbPollenCollection ProbPollenCollection
 * (HoneyEnergyStore / DecentHoneyEnergyStore)
]

 FlowerPatchesUpdateProc
 Foraging_start-stopProc ; some foragers might spontaneously start foraging
 Foraging_searchingProc ; unexperienced foragers search new flower patch
 Foraging_collectNectarPollenProc ; succesful scouts and experienced Foragers gather nectar
 Foraging_flightCosts_flightTimeProc ; energy costs for flights and trip duration
 Foraging_mortalityProc ; foragers might die on their way back to the colony
 Foraging_dancingProc ; successful foragers might dance..
 Foraging_unloadingProc ; ..and unload their crop & increase colony's honey store

 let foragersAlive SQUADRON_SIZE * count foragerSquadrons

 let currentNectarForagers
 SQUADRON_SIZE * count foragerSquadrons with
 [activity = "expForaging" and pollenForager = false]

 let currentPollenForagers
 SQUADRON_SIZE * count foragerSquadrons with
 [activity = "expForaging" and pollenForager = true]

 let currentResters
 SQUADRON_SIZE * count foragerSquadrons with
 [activity = "resting"]

 let currentScouts
 SQUADRON_SIZE * count foragerSquadrons with
 [activity = "searching"]

 let currentRecruits
 SQUADRON_SIZE * count foragerSquadrons
 with [activity = "recForaging"]

 let currentLazy
 SQUADRON_SIZE * count foragerSquadrons
 with [activity = "lazy"]

 if sqrt ((foragersAlive - currentNectarForagers ; to avoid bugAlarm caused by numeric inaccuracy!
 - currentPollenForagers - currentResters
 - currentScouts - currentRecruits - currentLazy) ^ 2) > 0.0000000001
 [
 set BugAlarm true show "BUG ALARM in ForagingRoundProc: wrong number of forager activities!"
]

 if ShowAllPlots = true
 [

 let i 1
 while [i <= N_GENERIC_PLOTS]
 [
 let plotname (word "Generic plot " i)
 ; e.g. "Generic plot 1"

 set-current-plot plotname
 if (i = 1 and GenericPlot1 = "active foragers today [%]")
 or (i = 2 and GenericPlot2 = "active foragers today [%]")
 or (i = 3 and GenericPlot3 = "active foragers today [%]")
 or (i = 4 and GenericPlot4 = "active foragers today [%]")
 or (i = 5 and GenericPlot5 = "active foragers today [%]")
 or (i = 6 and GenericPlot6 = "active foragers today [%]")
 or (i = 7 and GenericPlot7 = "active foragers today [%]")
 or (i = 8 and GenericPlot8 = "active foragers today [%]")
 [
 create-temporary-plot-pen "active%"
 set-plot-y-range 0 110
 set-plot-pen-mode 0 ; 0: lines
 ifelse foragersAlive > 0
 [
 plot (100 * SQUADRON_SIZE ; % active foragers of all foragers CURRENTLY alive
 * (count foragersquadrons
 with [activity != "resting" and activity != "lazy"])) / foragersAlive
] ; i.e. with activities = "searching", "recForaging" or "expForaging"
 [
 plot 0
]
 create-temporary-plot-pen "deaths%"
 set-plot-pen-color red
 plot 100 * DeathsForagingToday ; cumulative deaths as % of todays' INITIAL foraging force
 / (foragersAlive + DeathsForagingToday)
]

 if (i = 1 and GenericPlot1 = "foragers today [%]")
 or (i = 2 and GenericPlot2 = "foragers today [%]")
 or (i = 3 and GenericPlot3 = "foragers today [%]")
 or (i = 4 and GenericPlot4 = "foragers today [%]")
 or (i = 5 and GenericPlot5 = "foragers today [%]")
 or (i = 6 and GenericPlot6 = "foragers today [%]")
 or (i = 7 and GenericPlot7 = "foragers today [%]")
 or (i = 8 and GenericPlot8 = "foragers today [%]")
 [
 create-temporary-plot-pen "nectar"
 set-plot-pen-color yellow
 set-plot-pen-mode 0 ; 0: lines
 set-plot-y-range 0 100
 ifelse foragersAlive > 0
 [plotxy ForagingRounds (100 * currentNectarForagers) / foragersAlive
 create-temporary-plot-pen "pollen"
 set-plot-pen-color orange

 plotxy ForagingRounds (100 * currentPollenForagers) / foragersAlive
 create-temporary-plot-pen "scouts"
 set-plot-pen-color green
 plotxy ForagingRounds (100 * currentScouts) / foragersAlive
 create-temporary-plot-pen "resters"
 set-plot-pen-color brown
 plotxy ForagingRounds (100 * currentResters) / foragersAlive
 create-temporary-plot-pen "lazy"
 plotxy ForagingRounds (100 * currentLazy) / foragersAlive
 create-temporary-plot-pen "recruits"
 set-plot-pen-color blue
 plotxy ForagingRounds (100 * currentRecruits) / foragersAlive
]
 [
 plotxy ForagingRounds 0
 create-temporary-plot-pen "pollen"
 set-plot-pen-color orange
 plotxy ForagingRounds 0
 create-temporary-plot-pen "scouts"
 set-plot-pen-color green
 plotxy ForagingRounds 0
 create-temporary-plot-pen "resters"
 set-plot-pen-color brown
 plotxy ForagingRounds 0
 create-temporary-plot-pen "lazy"
 plotxy ForagingRounds 0
 create-temporary-plot-pen "recruits"
 set-plot-pen-color blue
 plotxy ForagingRounds 0
]
] ; END: if plotChoice = "foragers today [%]"

 set i i + 1
]

] ; if ShowAllPlots = true
end

;
**
**

to ForagersDevelopmentProc
 ; foragers age by 1 day, forager turtles move forward
 ask foragerSquadrons
 [
 set age age + 1
 fd 1.8 ; movement on GUI
]
end

;
**
**

to NewForagersProc
 ; creates foragerSquadrons as turtles, based on # in-hive bees developing into foragers

 let foragerSquadronsToBeCreated
 NewForagerSquadronsHealthy
 + NewForagerSquadronsInfectedAsPupae
 + NewForagerSquadronsInfectedAsAdults
 let newCreatedBees 0

 create-foragerSquadrons foragerSquadronsToBeCreated
 [
 set newCreatedBees newCreatedBees + 1
 ifelse ticks = 1
 [
 set age 100 + random 60 ; age of initial foragers: 100d + 0..59d
 setxy 40 9
 set color grey
 set size 2
 set heading 90
 set shape "bee_mb_1"
 set mileometer random (MAX_TOTAL_KM / 4)
] ; IF 1st time step: (=initial bees): travelled distace equally distributed,
 ; (winterbees have done only little foraging in autumn!)

 [; ELSE: all other foragers
 set age Aff
 setxy (-20 + age) 9
 set color grey
 set size 2
 set heading 90
 set shape "bee_mb_1"
]

 set activity "resting"
 set activityList []
 set cropEnergyLoad 0 ; [kJ] no nectar in the crop yet
 set collectedPollen 0 ; [g] no pollen pellets
 set knownNectarPatch -1 ; -1 = no nectar Flower patch known
 set knownPollenPatch -1 ; -1 = no pollen Flower patch known
 set pollenForager false
 ; foragers are nectar foragers except they decide to collect pollen

 ; creation of HEALTHY and INFECTED foragers:
 set infectionState "healthy"
 ; possible infection states are: "healthy" "infectedAsPupa" "infectedAsAdult"

 if newCreatedBees > NewForagerSquadronsHealthy
 [
 set infectionState "infectedAsPupa"
 set ycor ycor - 3
] ; foragers infected as pupa are created

 if newCreatedBees > (NewForagerSquadronsHealthy + NewForagerSquadronsInfectedAsPupae)
 [
 set infectionState "infectedAsAdult"
 set ycor ycor + 1.5
] ; foragers infected as adults are created
] ; create-foragerSquadrons

 ; the toal number of ever produced foragers is recorded and can be used as output:
 set SummedForagerSquadronsOverTime
 SummedForagerSquadronsOverTime
 + NewForagerSquadronsHealthy
 + NewForagerSquadronsInfectedAsPupae
 + NewForagerSquadronsInfectedAsAdults

 ; no more new foragers have to be created in this time step:
 set NewForagerSquadronsHealthy 0
 set NewForagerSquadronsInfectedAsPupae 0
 set NewForagerSquadronsInfectedAsAdults 0
end;

;
**
**

to-report Foraging_PeriodREP
 let foragingPeriod_s -1
 let foragingHoursList []
 ; "foragingPeriod" = HOURS SUNSHINE ON DAYS WITH Tmax > 15degC

 ; 2000: from weather data Berlin, Germany (DWD), (1.1.-31.12.2000);
 let foragingHoursListBerlin2000
 [0
 0 7.2
 0 2.5 0 0 0 0
 0 0 0 10.7 0 0 0 0 0 0 0 0 0 0 0 7 0 7.9 6.8 4.7 10.8 11.2 11.8
 11.2 9.9 0 10.7 10.4 4.2 10.6 8.7 5.7 13.3 13.2 12 14 14.1 13.9
 13.1 10.7 7.1 13.7 14.6 15 15.1 15 13.5 10.3 2.6 5.9 0 6 0 8.4 2.4
 0.7 12.1 5.8 6.8 8.7 6 10 8.7 14.2 12.3 7.4 3.4 0.2 7.2 13.2 15.8
 13.9 9.5 11 15.3 4.1 2.1 6 12.7 10.4 15.4 15.1 11.4 8.5 8 1.5 1.5
 2.4 2.6 1.1 0.1 0 9.5 4.5 2.4 3.9 1.3 2.2 8.3 1.1 3.4 2.8 5.1 0.2
 6.4 0.5 3.4 5.2 5.4 0.1 0 1.5 0 0.5 7.9 9.8 4.4 1.6 3.8 2.1 0.6 1
 1.5 10.7 3.8 8.3 7.1 9.3 12.7 6.9 3.6 10.3 3.3 0.2 5.7 11.7 13.4
 7.8 5.2 9.5 5 4.2 5.4 2 7.3 8.5 9 4.7 13.1 10.5 0 7.5 8.6 4.3 8

 2.5 0 2.2 1.2 8.1 2.8 0 0.4 5.1 1.2 6.2 2.1 0.1 5.1 0.3 0 11.7 0
 0 10.4 6.5 11.1 11.3 8.5 1.2 8.8 5.6 10.6 10.3 8.1 3.7 9.4 2.2 0.2
 0 0 0 0 0 2.2 2.9 2.7 6.9 0 6 3.3 0 0 0 7.4 9.1 8.9 1.7 0 0 0 0 4.1
 0
 0]

 ; 2001:
 let foragingHoursListBerlin2001
 [0
 0
 0 2.3 10.3 6.2 5.5
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 8.1 3.9 6.6 0 3 10.9 13
 13.2 13.6 4.9 0 0 0 9 14.2 14.2 14.7 13.7 12.2 12.6 2.1 8.3 2.9 5.3
 10.1 13.1 8.3 7.5 15.3 15.1 14.9 11.6 6.5 0 6.2 3.5 1 2 0 0 0.7 1.2
 3.1 3.1 1.4 8.9 0 6.9 0 11.3 4.6 6.8 4 8.5 3.2 5.7 14.3 3.3 3.3 2.5
 6 13.6 13.3 14.3 1.7 10.6 12.8 5.6 0.9 12.6 12.4 11.2 13.1 6.6 0.4
 0 5.5 5.4 11.1 6.5 2.5 3 0 0.6 8.5 11.9 11.2 5.9 11.1 7.9 11 10.4
 10.9 14.9 14.5 6.3 12.2 2.7 5.8 12.6 3.9 2.8 5.2 6.5 5.3 5.9 8.5 7.3
 7.4 1.1 0 5.6 13.3 12.8 6.2 0 2.9 6.6 0 9.3 11.8 8.3 10.3 11 3.8 4
 4.3 10.9 2.9 3.9 2.5 0.3 1.2 8.1 2.9 1.6 6.2 0 0.2 0 2.1 0.2 1.5 4.2
 3.8 3.5 0 9.9 0.5 2.6 1.1 9 0 0 0 0 0.8 4.3 0 0 0 2.2 4.5 3.8 9.5 1.1
 7.9 3.9 7.6 0 7.7 7.5 6.3 1.2 5.5 0 0 1.9 6.9 0 0 0 0 0 5.7 0 0 0 3.1
 2.2 0
 0]

 ; 2002:
 let foragingHoursListBerlin2002
 [0
 0 5.9 8.3 0 9.7
 0 0 0 0 0 0 7.2 0 0 0 0 0 0 0 0 0 0 11.2 9.1 2.8 11.2 11 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 5 0 6.7 13.3 3.3 0 0.2 3.2 0 0 0 0 2.7 1 5.8 0 0 4.5 0 8.1
 12.7 11.7 5.2 5.6 7.9 6.7 4.3 10.4 13.7 14.7 0 8.6 10.9 12.9 7.7 2.4 1.4 0
 6.1 0 6.7 11.3 6.1 10.3 13.3 10.4 8.9 7.7 3.9 0 0 0.4 1.7 4.6 1.3 0.2 3
 4.8 6.2 11.1 14.4 6.4 6 4.3 9.9 6.3 9 10.3 10.1 7.4 8.3 5 1.4 0 2 1.9 0.3
 12.2 5.7 4.5 12.9 14.5 11.5 8.2 6.9 7.8 0 1.4 6.4 0.9 0.6 0 2.9 11.7 0.9
 1.6 2 2.9 0.4 8.6 14.3 11.3 11.5 7.1 7.6 0.7 13.4 8.8 0.1 7.5 4.3 2.9 3.7
 4.7 9.1 0 0 1.2 10.4 6.1 6.3 12.2 12.3 12.9 11.8 9.2 10.7 9 9.3 10.6 10.8
 10.5 8.5 8.6 6.7 7.8 11.8 10.4 10.6 6.7 10.6 4.8 10.4 10.9 9 7.2 12.1 10.2
 3.7 8.8 1.5 1.9 3.3 4.3 0.3 2.6 0 0 0 9.4 0 0 0 0.7 6.6 9.3 8.9 6.2 4.3 0
 0 0 0 0 0 0 0 0 0 0 1.2 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

 ; 2003:
 let foragingHoursListBerlin2003
 [0
 0
 0 0 0 0 0 0 0 0 11.5 7.9 0 1.8 0 9.6 8.1 0 9.7 0 0 0 0 0 0 0 0 0 0 0 11.7
 12.4 12.4 12.5 12.7 0 0 11.8 11.7 12.8 12.4 8.6 8.6 0.1 7.3 4.7 2.9 4.5 7.3
 9.5 3.1 13.5 12.4 7.7 9.4 11.6 0.5 4.9 10.6 4.1 3.1 4.6 0 5.3 6.7 7.3 1.7
 5.5 5.9 8.1 1.1 13.1 14.3 5.6 10.3 9.9 15.4 15.4 7.8 14.3 14.4 12.5 13.6 10.9

 11.4 13.6 13.2 11.2 13.6 9.3 12.4 12.5 8.8 8.9 10.3 13.3 3.6 1.8 5.3 2.8 10.8
 5.7 10.9 2.7 3.8 13.9 15.2 5.2 11.6 2.3 6.1 8.1 1.3 0.4 0.1 3.6 4.5 3.1 6.2
 13.4 4.2 6.4 15.7 13.3 13.2 4 6.5 13.4 13.3 8.5 12.6 8.9 6.6 4.2 2.2 7.6 5
 7.5 12.6 4.6 10.4 5 8.1 12.8 12.8 12.1 13.9 13.8 13.9 14.2 14.4 10.5 13 4.6
 9.9 9.4 13.3 6 3.6 10.1 9.3 9.4 4.3 6.8 11.9 7.2 2.6 2.7 2.3 4.6 7.8 3.8 10.8
 2.7 0.8 11.7 11.2 5.7 9.7 2 3.5 0 1.3 3.5 6.1 10.8 8.2 6.9 10.7 11.4 11.3 11.6
 11.1 2.8 9.6 11.4 11.3 3.1 6.5 2.4 0 9.6 1.7 2.4 3.1 0 0 0 0 0 0 0 0 0 0 0
 0
 0]

 ; 2004:
 let foragingHoursListBerlin2004
 [0.1 0
 0
 0 9.9 7 1.3 0 0 0 0 0 0 0 0 0 0 0 12 10.6 0 6.5 2.5 0 0 0 0 0 0 0 0 0 13.2 13.1
 12.5 11 8.4 0.5 4.5 3.2 10.4 0 0 10.2 0 2 13.9 11.6 12.5 7.2 0 3.9 5.2 8.2 3.9
 2.3 0 0 4.4 4.7 0 0 6.6 0 9.6 0.4 8 8.4 8.1 0 0 0 0 1.6 0 0 11.6 15.2 14.8 8.7
 7.9 0 12.8 4.2 1.1 12.1 8.2 9.4 2.9 4.6 4 9.1 6.2 6.6 5.5 9.6 1 2.6 4.9 11.7
 11.6 7.7 4.9 5.2 5.4 6.3 0.2 8.6 8.1 4.5 5.8 9.3 7 7.5 6 11.4 13.7 4 3.6 3.9 9.6
 1 0.8 4.2 2.5 1.1 7.5 10.4 7 9.6 5 3.3 10.3 6.5 6.4 4.1 6.7 11.2 14.8 14.4 11.5
 9.7 8.3 8.5 12.2 11.9 13.9 12.4 12.6 12.9 13.7 7.3 11.5 4.9 5.2 12 7.5 5.1 6.3
 6.2 4.2 5.8 10.1 7.1 2.7 2.9 3 1.9 2.1 3.2 0.7 3.8 6.7 12.2 12.4 12.4 12.8 12.4
 10.7 11.6 12.6 12.5 4.5 5.1 4 5.2 7.8 8.1 11.6 11.7 4.7 2.4 1.5 3.2 0 0 3.9 0
 0.2 0.8 1 3.5 0.8 3.7 8.7 5.3 9.5 1.9 8.1 0 0 0 0 0 0 0 0 0 0 0 0 0 6.5 9.3 1.3
 5.4 3.7 0
 0]

 ; 2005:
 let foragingHoursListBerlin2005
 [0
 0.8 0.4
 0 0 0 0 0 0 4.7 7 0 0 0 0 0 0 0 12.3 10.4 11.7 0 9.4 0 0 0 0 0 6.3 2.1 6.7 7 10.2
 10 11.4 10.3 0 0 0 0 0 4.4 11.7 0 8.4 8.5 6.6 11.7 9.7 5 2.5 7.1 2.3 0 0 0 0 0
 0 11.8 1.6 0 8.4 0 0 12.7 11 5.7 4.7 0.4 5.4 9.6 12.7 13.9 15 14.2 0 4.3 0 2.8
 7.9 6.7 2.5 0 0 9.5 6.6 1.2 0 0 11.7 10.2 7.9 11.5 0.4 14.1 11.1 16 11.9 7.2 15.7
 9.8 8.7 14.8 15.7 15 13.8 10.9 0.1 3.2 9.2 12 0 1.1 2.1 0.1 3 14.3 14.8 14.9 13.7
 12 11 9.1 7.3 6.4 4.7 4.3 0 3 0.2 4.6 4 2.1 6.8 7.9 6.8 6.9 9.4 8.5 10.1 0 6.4
 5.6 3.9 5.1 11.1 0.5 0 1.3 8.4 0.6 1.2 4 10.9 6.6 13.7 12.4 8.4 11.5 11.1 0 6.5
 0.2 5.6 11.3 10 12.8 12 12.8 12.3 8.4 0.9 12.4 12.4 12.5 11.9 11.7 11.7 7.4 0 0.2
 6.6 6.9 7 0 8.1 11.7 6.8 5 0.7 11.3 11.2 10.3 10.5 3.6 7.4 0.8 0 3.4 1.7 0 0 5.4
 9.5 10 9.4 8.9 9.2 7.5 9.8 9.7 9.2 9.6 8.6 0 0 0 0 5.7 0 0.2 2.2 0 0 3.3 7.7 8.9
 8.6 8.2 0 0 0 2.7 0
 0]

 ; 2006:
 let foragingHoursListBerlin2006
 [0
 0
 0 0 0 0 1.8 1.5 5 0 0 0 3.8 8.5 0 0 0 0 0 8.2 0 0 0 0 0 0 0 0.1 0 0 6.5 9.6 4.3
 0 3.7 0 13.1 4.7 0 0 0 0 10.5 5.6 13.4 12.5 11.9 11 12.2 10.6 14.2 14.7 14.1 12.6
 6.8 4.6 10.5 8.6 1.4 0.3 3.5 6.1 1.5 7.7 5.8 9.9 0 0 1.6 6.6 0 0 2.4 0 11.5 4.4 0

 0 4.8 9 11.5 11.5 15.6 15.8 15.8 15.7 15.2 7.5 5.6 1.2 9.1 9.8 9 7.7 6.4 9.8 12.4
 13 9.7 12.3 10.4 10.2 0.7 14.2 15.8 16 16 15.7 12.9 10.6 2.5 12.3 11.7 10.8 13.3
 8.5 10.3 11.5 13.4 15.7 15.7 15.5 13.9 12 14.1 6 14 12.9 14.8 13.6 5 5 12.9 6 9.3
 8.5 6.4 3.5 0.6 0.8 9.3 4.6 5.3 2 3.9 8.4 0 9.8 2.2 6.9 8.2 3.7 11.2 7.7 4.9 7 0.9
 9.6 3.5 2.3 4.2 6.7 1.2 0.2 4.2 0.2 7.7 0 5.1 9.1 3.7 8.5 6.4 5.3 11.9 12.4 11.5
 12.1 12 11.4 6.4 4.7 9.2 1 8.9 11.3 11.5 11.4 11.3 11.1 9.5 0.1 3 10.2 7.8 3.9 1.3
 0.4 0.2 2.9 0.9 1.4 4.2 9.8 9.1 6.3 8.2 0 0 0 6.7 9.9 7.9 4.8 0 6 5.3 3.2 2.7 4.4
 6.3 7.1 0 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.7 7.7 1.3 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0]

 ; ROTHAMSTED WEATHER DATA 2009:
 ;TH: 15C:
 let foragingHoursListRothamsted2009 [0
0
0 0 0 0 0 0 10.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.8 0 0 8.9 0 5.4 0 0 0 0 0 0 4.1 6 5.9
0 0 0 0 10.1 12.3 11 9.3 10.5 0 11.5 0 0 11.2 4.5 8 10.3 0 0 5.2 7.5 3.2 0 9.4 10.3 0 11.6
0 0.7 0 0 0 6.9 5.4 8.2 8.7 8.4 12.5 15 7.5 7.5 0.7 6.7 13 15 14.2 14.3 14.9 3.4 11.7 0 0
4.3 2.5 0 0.9 6.5 11.8 5.4 13 5.4 9.4 4.7 6 9.7 2.7 9 5 10.6 13.9 8 2.7 4.7 4.3 10.8 11.7
12.7 12.3 6.2 11.8 9 6.8 4.7 3.7 5.2 9.7 2.2 7.4 7.4 8.7 6.1 3.6 1.9 5.3 3.8 7.8 0.2 7.1 6.1
6.5 11.4 1.8 5.1 6.8 1.6 8.7 8.6 0.9 8.5 5.4 0 5.9 3.2 2.7 9.5 4.8 2.7 8.5 1.8 6.2 3.2 2.6
10.4 7.5 7.5 12.3 5.4 8.4 8.1 11.4 7.3 5.8 2.3 7.4 7.4 8.7 3.8 5.7 7.3 0.4 5.2 7.5 6.1 4.3 0.5
6.7 5.7 7 4.8 9.8 0.8 3.6 0 4.6 1.6 7.7 3.4 4.4 4.9 3.3 1.8 9.7 9.9 8 9.3 0.9 5.2 0.3 5.6 5.5
0.8 4.9 0.1 0.1 0 0 0 4 3.5 0 0 0 0 0 0 0 0 0 0 0 6.2 0.5 4.2 0 1.3 0.6 1.8 0 2.5 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

 ; ROTHAMSTED WEATHER DATA 2010:
 ; TH: 15C:
 let foragingHoursListRothamsted2010 [0
0
0 0 0 0 0 0 0 0 5.3 0 0 0 0 0 5.8 0 0 0 0 0 0 0 0 0 0 0 0 9.3 0 11.4 9.1 10.6 0 0 0 0 0
0 11.8 11.4 0 0 0 0 13.1 11.2 2.4 4.4 10.4 8.1 1.7 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 8.3 0
6.4 7 8.1 5.9 12.5 14.9 15 14.7 9 5 6.2 10.7 0 10.1 1.1 0 12.8 15.4 12.9 8.5 3.7 5.7 3.1 2.8
0.9 5 4.5 5 6.5 9 12.1 13.9 1.5 0 6.9 9.1 14.6 13 10.2 9 8.9 13.7 14 6.2 7.6 7.3 3.8 10.3
10.2 7.2 7.6 1.4 6.5 12.5 10.8 7.3 4.6 0 2.2 4.1 6.8 9.6 6.3 9.3 5.8 10.3 7.6 1.7 7 2.9 0.9
1.2 2 2 4 6 1.3 3.3 7.3 0.8 5.8 4.6 3 5.8 9.3 1.1 9.6 2.9 2.8 1.4 8 7.2 2.1 6.6 4.9 1.1 1.3
6.3 2.9 8 1.6 0 2.9 7.5 4.7 6 10.2 11.3 11.1 8.5 5.6 2.4 4 5 1.6 4.2 1 3 8.6 2.3 0 5 4.6 6.3
7.3 1.1 5.2 7.5 8.7 1.3 0 0 0 0 0.3 0.1 6.6 0 3.1 1.3 0.1 0.7 5.2 6 4.1 0 6.4 8.6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 4.7 0 0 0 0 0 0 3.3 2.2 0
0 0]

 ; ROTHAMSTED WEATHER DATA 2011:
 ; TH: 15degC
 let foragingHoursListRothamsted2011 [0
0 5.4 1.7 0 0 0 0 0 0 0 0 0 0
0 0 3.2 0 4.9 0 0 3.9 0 0 0 0 0 3.1 1.1 10.1 10.5 10.2 3 7.5 6.5 4.6 0.2 4.8 3.3 3.9 6.1 6.2
0 11.5 10.2 12.5 12 11.1 8.5 10.2 0 0.2 5 3.6 6.6 6.7 11.3 8.5 7.8 12.6 12.7 10.1 12.8 4.6
10.9 6.8 5.3 12.9 12.2 13 13.2 13.6 6.6 11.8 3.2 6.8 10.8 11 2.1 8 7.2 8.7 5.1 3.6 2.6 1.3
9.8 8.6 12.3 9.4 4.5 11.9 13 3.8 4.1 2.9 4.2 1.5 10.8 9.7 9.8 13.5 10.7 2.6 0.9 9.1 8.5 4.5
6.6 9.4 2 6.6 11.8 3.6 5.2 1.3 6.7 9.8 7.1 7.1 5.2 7 7.3 6.7 12 8.9 1.6 11.1 8.2 8.5 8.3 4.8
4.6 8.7 6.7 4.4 3.3 5.6 4.2 8.3 1 2.1 8.1 9.5 3.2 3.1 1.1 3.6 1.4 1.3 8 6.6 12.7 9.2 1.7 2.3

6.9 2.2 11.3 8.7 7.5 6.9 8.7 0.3 3.5 1.8 4.9 7.5 10.1 7.1 2.5 2.8 2 6.4 7.2 3.5 4.1 0.1 9.6
5.4 6.6 8.8 0 4.2 3.2 1.2 5.6 4.4 4.6 0 1 6.2 8.4 5 2 5.8 0 1.2 1.5 1.5 2.3 5.2 6.9 7.5 8.6 7
4.9 5.9 6 6.6 0.2 2.6 5.3 8.4 6.4 6.9 2.7 6.3 9.5 9.7 9.8 9.2 9.7 6.3 4.1 1.3 7 3.3 0.8 2.3 4.7
1.6 2.3 0.1 8.3 9.3 4.5 2.3 8.2 6 0 3.3 9.1 6.4 4.8 2.8 5.8 0 8.3 4.1 0 0 4.1 3.5 0 1.4 0.5 0
0 0 1.1 1.2 0 0.7 5.9 0 0 0 2.2 3 0 0 0 0 0 2 0 2.8 5.6 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0]

 if Weather = "Rothamsted (2009-2011)"
 [
 let inputYear 2011 + round ((ceiling (ticks / 365)) mod 3)
 if inputYear > 2011
 [
 while [inputYear > 2011] [set inputYear inputYear - 3]
] ; after 3 years, 1st dataset is used again etc.

 ;if day = 1 [type "Rothamsted weather data, year: " print inputYear]
 if inputYear = 2009 [set foragingHoursList foragingHoursListRothamsted2009]
 if inputYear = 2010 [set foragingHoursList foragingHoursListRothamsted2010]
 if inputYear = 2011 [set foragingHoursList foragingHoursListRothamsted2011]
]

 if Weather = "Rothamsted (2009)" [set foragingHoursList foragingHoursListRothamsted2009]
 if Weather = "Rothamsted (2010)" [set foragingHoursList foragingHoursListRothamsted2010]
 if Weather = "Rothamsted (2011)" [set foragingHoursList foragingHoursListRothamsted2011]

 if Weather = "Berlin (2000-2006)"
 [
 let inputYear 2006 + round ((ceiling (ticks / 365)) mod 7)
 if inputYear > 2006 [while [inputYear > 2006] [set inputYear inputYear - 7]]
 ; after 7 years, 1st dataset is used again etc.
 if inputYear = 2000 [set foragingHoursList foragingHoursListBerlin2000]
 if inputYear = 2001 [set foragingHoursList foragingHoursListBerlin2001]
 if inputYear = 2002 [set foragingHoursList foragingHoursListBerlin2002]
 if inputYear = 2003 [set foragingHoursList foragingHoursListBerlin2003]
 if inputYear = 2004 [set foragingHoursList foragingHoursListBerlin2004]
 if inputYear = 2005 [set foragingHoursList foragingHoursListBerlin2005]
 if inputYear = 2006 [set foragingHoursList foragingHoursListBerlin2006]
]

 if Weather = "Berlin (2000)" [set foragingHoursList foragingHoursListBerlin2000]

 if Weather != "HoPoMo_Season"
 and Weather != "HoPoMo_Season_Random"
 and Weather != "Constant"
 and Weather != "Weather File" ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 [
 set foragingPeriod_s (item (day - 1) foragingHoursList) * 3600
] ; [s] hours sunshine on that day, in seconds

 if Weather = "HoPoMo_Season" or Weather = "HoPoMo_Season_Random"
 [

 set foragingPeriod_s 12 * 3600 * (1 - Season_HoPoMoREP day [385 25 36 155 60])
 if foragingPeriod_s < 3600 [set foragingPeriod_s 0]
] ; bell shape curve of foraging period, 12 * 3600 = 12 hrs max.

 if Weather = "HoPoMo_Season_Random"
 [
 if random-float 1 < 0.15 [set foragingPeriod_s random-float (4 * 3600)]
]

 if Weather = "Constant" [set foragingPeriod_s 8 * 3600]

 ; begin ***NEW FOR BEEHAVE_BEEMAPP2015***
 if Weather = "Weather File"
 [
 let year_no ceiling (ticks / 365) - 1

 set foragingPeriod_s item (day - 1) (item (year_no mod length(WeatherDataList))
WeatherDataList) * 3600
]
 ; end ; ***NEW FOR BEEHAVE_BEEMAPP2015***

 ask signs with [shape = "sun"]
 [
 ifelse foragingPeriod_s > 0
 [show-turtle set label precision (foragingPeriod_s / 3600) 1]
 [hide-turtle set label " "]
] ; "sun" sign is shown, whenever there is an opportunity to forage

 ask signs with [shape = "cloud"]
 [
 ifelse foragingPeriod_s < (4 * 3600)
 [show-turtle]
 [hide-turtle]
] ; "cloud" sign is shown, whenever there is less than 4 hrs of foraging possible

 if foragingPeriod_s = -1
 [
 set BugAlarm true
 show "BugAlarm in Foraging_PeriodREP! Weather not defined!"
]
 if foragingPeriod_s < 0 [set foragingPeriod_s 0] ; ***NEW FOR BEEHAVE_BEEMAPP2015***
 report foragingPeriod_s
end

;
**
**

to-report Foraging_ProbabilityREP
 ; calculates the probability that a forager start spontaneously to forage,
 ; called by Start_IBM_Proc once a day
 let foragingProbability 0.01 ; 0.01
 ; default foraging probability per "round" (round: ca. 13 min)
 ; 0.01 comparable to Dornhaus et al 2006: 0.00033/36s
 let highForProb 0.05 ; 0.02
 let emergencyProb 0.2
 ; foraging prob. is increased if pollen is needed:
 if (PollenStore_g / IdealPollenStore_g) < 0.2
 [
 set foragingProbability highForProb
]

 if HoneyEnergyStore / DecentHoneyEnergyStore < 0.5
 [
 set foragingProbability highForProb
]
 ; foraging prob. is increased if pollen is needed:
 if HoneyEnergyStore / DecentHoneyEnergyStore < 0.2
 [
 set foragingProbability emergencyProb
]

 if (PollenStore_g / IdealPollenStore_g) > 0.5 and
 HoneyEnergyStore / DecentHoneyEnergyStore > 1
 [
 set foragingProbability 0
] ; no foraging if plenty of honey and pollen is present

 let i 1
 while [i <= N_GENERIC_PLOTS]
 [
 let plotname (word "Generic plot " i)
 ; e.g. "Generic plot 1"
 set-current-plot plotname
 if (i = 1 and GenericPlot1 = "foraging probability")
 or (i = 2 and GenericPlot2 = "foraging probability")
 or (i = 3 and GenericPlot3 = "foraging probability")
 or (i = 4 and GenericPlot4 = "foraging probability")
 or (i = 5 and GenericPlot5 = "foraging probability")
 or (i = 6 and GenericPlot6 = "foraging probability")
 or (i = 7 and GenericPlot7 = "foraging probability")
 or (i = 8 and GenericPlot8 = "foraging probability")
 [
 create-temporary-plot-pen "ForProb"
 set-plot-pen-mode 0 ; 0: lines
 plotxy ticks (foragingProbability)
]
 set i i + 1

]

 ask Signs with [shape = "exclamation"]
 [; if the foraging prob. is set to 0, an exclamation mark is shown
 ; on the interface (beside the weather sign)
 ifelse foragingProbability > 0
 [hide-turtle]
 [show-turtle]
]

 report foragingProbability
end

;
**
**

to Foraging_start-stopProc
 ; decision for pollen or nectar foraging; active foragers may quit foraging;
 ; foragers might spontaneously start or continue foraging (either exploiting known
 ; patch or search new patch)

 let FORAGE_AUTOCORR 0 ;
 ; autocorrelation of chosen forage (i.e. probability to not-reconsider chosen forage
 ; type: 1: always collect the same forage type (i.e. nectar!) if 0: no effect)

 ask foragerSquadrons with [activity != "recForaging"]
 ; this does not apply to bees, that followed a dance in the last foraging round
 ; and hence have already made their decision for nectar or pollen foraging
 [
 if random-float 1 > FORAGE_AUTOCORR
 ; if smaller, the bee sticks to her current food type
 [
 ifelse random-float 1 < ProbPollenCollection
 [
 set pollenForager true ; IF -> pollen forager
 set activityList lput "PF" activityList
]
 [
 set pollenForager false ; ELSE -> nectar forager
 set shape "bee_mb_1" ;]]]
 set activityList lput "NF" activityList
]
]
]

 ask foragerSquadrons with
 [activity != "resting"
 and activity != "recForaging"

 and activity != "lazy"]
 ; i.e. ask actively foraging bees
 [
 if random-float 1 < FORAGING_STOP_PROB
 ; active foragers, that weren't recruited in the foraging round before, may abandon foraging
 [
 set activity "resting"
 set activityList lput "AfR" activityList
]
]

 ; recording of the activities & forage type in the activityList
 ask foragerSquadrons with
 [activity = "searching"]
 [
 if pollenForager = true
 [
 set activityList lput "Sp" activityList
]
 if pollenForager = false
 [
 set activityList lput "Sn" activityList
]
]
 ask foragerSquadrons with [activity = "resting"]
 [
 set activityList lput "R" activityList
]

 ask foragerSquadrons with [activity = "lazy"]
 [
 set activityList lput "L" activityList
]

 ask foragerSquadrons with
 [knownNectarPatch >= 0
 and pollenForager = false
]
 ; ask experienced NECTAR foragers if they abandon their nectar patch
 [
 if random-float 1 < 1 / [EEF] of flowerPatch knownNectarPatch
 and random-float 1 < (HoneyEnergyStore / DecentHoneyEnergyStore)
 ; chance to abandon depends on 1/EEF and is reduced if colony needs nectar
 [
 set knownNectarPatch -1 ; forager doesn't know a nectar patch anymore
 ifelse (activity != "resting" and activity != "lazy")
 [
 set activity "searching"
 set activityList lput "AnSn" activityList
] ; active foragers that abandoned their patch have to search a new one
 [

 set activityList lput "An" activityList
] ; resting foragers that abandoned their patch still rest
]
]

 ask foragerSquadrons with
 [knownPollenPatch >= 0
 and pollenForager = true]
 ; ask experienced POLLEN foragers if they abandon their pollen patch
 [
 if random-float 1 < 1 - (1 -
 ABANDON_POLLEN_PATCH_PROB_PER_S) ^ [tripDurationPollen] of flowerPatch
knownPollenPatch
 [
 set knownPollenPatch -1 ; forager doesn't know a pollen patch anymore
 ifelse (activity != "resting"
 and activity != "lazy")
 [
 set activity "searching"
 set activityList lput "ApSp" activityList
] ; active foragers that abandoned their patch have to search a new one
 [
 set activityList lput "Ap" activityList
] ; resting foragers that abandoned their patch still rest
]
]

 ask foragerSquadrons with [activity = "resting"]
 [
 if random-float 1 < ForagingSpontaneousProb
 ; resting foragers may start foraging spontaneously..
 [
 if pollenForager = false
 ; ask (resting) nectar foragers to become active
 [
 ifelse knownNectarPatch >= 0
 [
 set activity "expForaging"
 set activityList lput "Xn" activityList
] ; IF they already know a NECTAR patch, they become experienced nectar foragers
 [
 set activity "searching"
 set activityList lput "Sn" activityList
] ; ELSE: they become scouts and search a new one
]

 if pollenForager = true ; ask (resting) pollen foragers to become active
 [
 ifelse knownPollenPatch >= 0
 [
 set activity "expForaging"

 set activityList lput "Xp1" activityList
] ; IF they already know a POLLEN patch, they become experienced pollen foragers
 [
 set activity "searching"
 set activityList lput "Sp" activityList
] ; ELSE: they become scouts and search a new one
]
] ; "if random-float 1 < ForagingSpontaneousProb"
]
 ask foragerSquadrons ; if bees are "exhausted" they cease foraging on that day:
 [
 if km_today >= MAX_km_PER_DAY
 [
 set activity "resting"
]
]

end

;
**
**

to Foraging_searchingProc
 ; called by: ForagingRoundProc, determines if a patch (and which one) is
 ; found by a searching forager

 let patchCounter 0
 let probSum 0 ; necessary to decide, which flower patch is found
 let chosenPatch -1 ; -1: i.e. no patch chosen yet
 let cumulative_NON-detectionProb 1
 let nowAvailablePatchesList []

 ask flowerPatches with
 [quantityMyl >= CROPVOLUME * SQUADRON_SIZE
 or amountPollen_g >= POLLENLOAD * SQUADRON_SIZE]
 ; only patches with enough nectar OR pollen left are considered
 [
 set probSum probSum + detectionProbability ; sums up the detection probabilities of patches, to
decide later, which patch was actually found
 set cumulative_NON-detectionProb
 cumulative_NON-detectionProb * (1 - detectionProbability)
 ; Probability to find any patch is: 1 - Probability, to find no patch at all
 set nowAvailablePatchesList fput who nowAvailablePatchesList
]

 set TotalFPdetectionProb (1 - cumulative_NON-detectionProb)
 ; Probability to find ANY (not empty!) flower patch during one search trip

 ask foragerSquadrons with [activity = "searching"]

 [
 set SearchingFlightsToday SearchingFlightsToday + SQUADRON_SIZE
 ; counts the numer of search flights on current day
 ifelse random-float 1 < TotalFPdetectionProb
 ; if any (not empty!!) flower patch found by the forager:
 [
 let p random-float probSum ; to decide which flower patch is found
 set patchCounter 0
 set chosenPatch -1

 foreach nowAvailablePatchesList
 [
 ask flowerPatch ? ; "?" item of the list
 [; the patch is randomly chosen, according to its detection probability:
 set patchCounter patchCounter + detectionProbability
 if (patchCounter >= p) and (chosenPatch = -1) [set chosenPatch who]
]
]

 ifelse pollenForager = false
 [set knownNectarPatch chosenPatch]
 ; IF nectar forager: detected patch is memorised as nectar patch
 [set knownPollenPatch chosenPatch]
 ; ELSE pollen forager: detected patch is memorised as pollen patch

 if (knownNectarPatch < 0 and knownPollenPatch < 0)
 [
 user-message "BUG: negative flower patches!"
 set BugAlarm true
]

 ifelse (pollenForager = false
 and [quantityMyl] of flowerPatch chosenPatch >= (CROPVOLUME * SQUADRON_SIZE))
 ; collection of NECTAR - only if nectar is available at the chosen patch!
 ; this is necessary as the patch may offer only pollen
 [
 set activity "bringingNectar" ; then the scout becomes a successful nectar forager
 set activityList lput "fN" activityList

 ask flowerPatch knownNectarPatch
 [
 set quantityMyl (quantityMyl - (CROPVOLUME * SQUADRON_SIZE))
 ; quantity of nectar in patch is reduced

 set nectarVisitsToday nectarVisitsToday + SQUADRON_SIZE
 set summedVisitors summedVisitors + SQUADRON_SIZE
] ; and numbers of visitors increased
]
 [; ELSE: found a patch but it doesn't offer nectar: feN: "found empty nectar patch"
 if pollenForager = false
 [

 set knownNectarPatch -1
 set activityList lput "feN" activityList
]
]

 ifelse (pollenForager = true
 and [amountPollen_g] of flowerPatch chosenPatch >= (POLLENLOAD * SQUADRON_SIZE))
 ; collection of POLLEN - only if pollen is available at the chosen patch!
 [
 set activity "bringingPollen" ; then the scout becomes a successful pollen forager
 set activityList lput "fP" activityList

 ask flowerPatch knownPollenPatch
 [
 set amountPollen_g (amountPollen_g - (POLLENLOAD * SQUADRON_SIZE))
 ; quantity of nectar in patch is reduced
 set pollenVisitsToday pollenVisitsToday + SQUADRON_SIZE
 set summedVisitors summedVisitors + SQUADRON_SIZE
] ; and numbers of visitors increased
]
 [
 if pollenForager = true
 [
 set knownPollenPatch -1
 set activityList lput "feP" activityList
]
] ; ELSE: found patch does not offer nectar: feP: "found empty pollen patch"
] ; "ifelse random-float 1 < TotalFPdetectionProb"

 ; ELSE: no patch is found; uS = unsuccessful searching
 [
 set activityList lput "uS" activityList
]
] ; "ask foragerSquadrons with [activity = "searching"]"

 ask foragerSquadrons with ; ask recruited NECTAR foragers:
 [activity = "recForaging" ; forager is recruited
 and knownNectarPatch >= 0 ; it knows a patch where it is recruited to
 and pollenForager = false] ; and it is looking for nectar
 [; the flights of recruited bees are counted:
 set RecruitedFlightsToday RecruitedFlightsToday + SQUADRON_SIZE
 ; IF(1) recruited Forager finds the nectar patch:
 ifelse random-float 1 < FIND_DANCED_PATCH_PROB
 [; and IF (2) nectar is still there:
 ifelse [quantityMyl] of flowerPatch knownNectarPatch >= (CROPVOLUME * SQUADRON_SIZE)
 [; .. then the recruit becomes a successful nectar forager
 set activity "bringingNectar"
 ; which is recorded in its activityList:
 set activityList lput "frN" activityList
 ask flowerPatch knownNectarPatch
 [; the nectar in the patch is then reduced:

 set quantityMyl (quantityMyl - (CROPVOLUME * SQUADRON_SIZE))
 ; the visit is counted:
 set nectarVisitsToday nectarVisitsToday + SQUADRON_SIZE
 set summedVisitors summedVisitors + SQUADRON_SIZE
]
]
 [; ELSE(2): if patch has not enough nectar, recruit becomes a scout again
 set activity "searching"
 set activityList lput "eSn" activityList
 ; and the patch is forgotten:
 set knownNectarPatch -1
]
]
 [; ELSE(1): if the recruits does not find the patch, it starts searching
 set activity "searching"
 set activityList lput "mSn" activityList
 ; and forgets "known" nectar patch
 set knownNectarPatch -1
]
]

 ; also recruited POLLEN foragers are searching a patch:
 ask foragerSquadrons with
 [activity = "recForaging"
 and knownPollenPatch >= 0
 and pollenForager = true]
 [
 set RecruitedFlightsToday RecruitedFlightsToday + SQUADRON_SIZE
 ; they find their patch with the probability of FIND_DANCED_PATCH_PROB
 ifelse random-float 1 < FIND_DANCED_PATCH_PROB
 ; IF(1) recruited Forager finds the pollen patch...
 [
 ifelse [amountPollen_g] of flowerPatch knownPollenPatch >= (POLLENLOAD *
SQUADRON_SIZE)
 ; ..and pollen is still there..
 [set activity "bringingPollen"
 ; .. then the recruit becomes a successful pollen forager
 set activityList lput "frP" activityList
 ask flowerPatch knownPollenPatch
 [
 set amountPollen_g (amountPollen_g - (POLLENLOAD * SQUADRON_SIZE))
 ; ..pollen in the patch is reduced
 set pollenVisitsToday pollenVisitsToday + SQUADRON_SIZE
 set summedVisitors summedVisitors + SQUADRON_SIZE
] ; ..and numbers of visitors increased
]
 [; ELSE(2): if patch has not enough pollen, recruit becomes a scout again
 set activity "searching"
 set activityList lput "eSp" activityList
 set knownPollenPatch -1
]

]
 [; ELSE(1): if she does not find the patch, she starts searching
 ; (but can't find another patch in this foraging round)
 set activity "searching"
 set activityList lput "mSp" activityList
 ; it forgets its "known" pollen patch:
 set knownPollenPatch -1
]
] ; "ask foragerSquadrons with [activity = "recForaging"]"

end;

;
**
**

to Foraging_collectNectarPollenProc
 ; successful foragers gather nectar/pollen (if still available) and decrease
 ; nectar/pollen in flower patch

 ; ask experienced NECTAR foragers:
 ask foragerSquadrons with
 [activity = "expForaging"
 and knownNectarPatch >= 0
 and pollenForager = false]
 [; does patch still have enough nectar?:
 ifelse [quantityMyl] of flowerPatch knownNectarPatch >= (CROPVOLUME * SQUADRON_SIZE)
 [; the forager will then be bringing nectar:
 set NectarFlightsToday NectarFlightsToday + SQUADRON_SIZE
 set activity "bringingNectar"
 ; this is recorded in its activityList:
 set activityList lput "N" activityList

 ask flowerPatch knownNectarPatch
 [; available nectar in the patch is reduced:
 set quantityMyl (quantityMyl - (CROPVOLUME * SQUADRON_SIZE))
 ; the visits are counted:
 set nectarVisitsToday nectarVisitsToday + SQUADRON_SIZE
 ; and numbers of visitors increased:
 set summedVisitors summedVisitors + SQUADRON_SIZE
]
]
 [; ELSE: not enough nectar available at the patch
 ; the forager will then become a scout:
 set activity "searching"
 set activityList lput "eSn" activityList
 ; the bee forgets this empty nectar patch
 set knownNectarPatch -1
]
]

 ; ask experienced POLLEN foragers:
 ask foragerSquadrons with
 [activity = "expForaging"
 and knownPollenPatch >= 0
 and pollenForager = true]
 [; does patch still have enough pollen?
 ifelse [amountPollen_g] of flowerPatch knownPollenPatch >= (POLLENLOAD * SQUADRON_SIZE)
 [; IF patch has enough pollen:
 set PollenFlightsToday PollenFlightsToday + SQUADRON_SIZE
 ; the forager will then be bringing pollen:
 set activity "bringingPollen"
 set activityList lput "P" activityList

 ask flowerPatch knownPollenPatch
 [; available pollen in the patch is reduced:
 set amountPollen_g (amountPollen_g - (POLLENLOAD * SQUADRON_SIZE))
 set pollenVisitsToday pollenVisitsToday + SQUADRON_SIZE
 ; and numbers of visitors increased
 set summedVisitors summedVisitors + SQUADRON_SIZE]
]
 [; ELSE: not enough pollen available at the patch
 ; the forager will then become a scout:
 set activity "searching"
 set activityList lput "eSp" activityList
 set knownPollenPatch -1
]
]

 ; experienced pollen foragers, who know a nectar patch but no pollen patch
 ; or experienced nectar foragers, who know a pollen patch but no nectar patch:
 ; this can happen if e.g. an exp. nectar foragers switches to pollen foraging
 ; these bees switch to "resting" and DO NOT LEAVE THE HIVE!
 ; hence, their mileometer or km_today doesn't change
 ; and they are not considered in the Foraging_MortalityProc
 ask foragerSquadrons with
 [(activity = "expForaging" ; experienced (but got its experience as pollen forager!)
 and pollenForager = false ; has now switched to nectar foraging
 and knownNectarPatch = -1 ; but doesn't know a nectar patch
)
 or
 (activity = "expForaging" ; experienced (but got its experience as nectar forager!)
 and pollenForager = true ; has now switched to pollen foraging
 and knownPollenPatch = -1 ; but doesn't know a pollen patch
)]
 [
 set activity "resting" ; switch to resting - i.e. they haven't left the hive in this foraging round
 set activityList lput "Rx" activityList
]

 ; ask successful NECTAR foragers:

 ask foragerSquadrons with [activity = "bringingNectar"]
 [; the energy content of their cropload is calculated, which depends on the nectar concentration:
 set cropEnergyLoad ([nectarConcFlowerPatch] of
 flowerPatch knownNectarPatch * CROPVOLUME * ENERGY_SUCROSE) ; [kJ]

 ; the distance they have travelled today is increased..
 set km_today km_today + ([flightCostsNectar] of
 flowerPatch knownNectarPatch / (FLIGHTCOSTS_PER_m * 1000))

 ; and also their total travelled distance:
 set mileometer mileometer + ([flightCostsNectar] of
 flowerPatch knownNectarPatch / (FLIGHTCOSTS_PER_m * 1000)) ;

 ifelse readInfile = true
 [; if patch data are read in, then the color of the bee
 ; reflects the ID of the flower patch:
 ; set color knownNectarPatch
 let memoColor 0
 ask flowerPatch knownNectarPatch [set memoColor color]
 set color memoColor
]
 [; ELSE: if there are 2 patches, defined via GUI,
 ; then the color of the bee reflects the patch it is foraging at:
 if knownNectarPatch = -1 [set color grey]
 if knownNectarPatch = 0 [set color red]
 if knownNectarPatch > 0 [set color green]
]
]

 ; and similar for successful POLLEN foragers:
 ask foragerSquadrons with [activity = "bringingPollen"]
 [; the pollen load is the same for all patches!
 set collectedPollen POLLENLOAD ; [g]
 set shape "bee_mb_pollen"

 ; the distance they have travelled today is increased..
 set km_today km_today + ([flightCostsPollen] of
 flowerPatch knownPollenPatch / (FLIGHTCOSTS_PER_m * 1000))

 ; and also their total travelled distance:
 set mileometer mileometer + ([flightCostsPollen] of
 flowerPatch knownPollenPatch / (FLIGHTCOSTS_PER_m * 1000)) ;

 ifelse readInfile = true
 [; the color of the bee is set according to its flower patch:
 ; set color knownPollenPatch
 let memoColor 0
 ask flowerPatch knownPollenPatch [set memoColor color]
 set color memoColor
]
 [

 if knownPollenPatch = -1 [set color grey]
 if knownPollenPatch = 0 [set color red]
 if knownPollenPatch > 0 [set color green]
]
]
end;

;
**
**

to Foraging_flightCosts_flightTimeProc
 ; sums up travelled distance for unsuccessful scouts and honey consumption due to foraging, trip
duration
 ; consumption is subtracted from honey store, not from the crop, as it is empty for unsuccessful
scouts
 let energyConsumption 0

 ; flight distance for successful foragers is calculated in Foraging_collectNectarPollenProc!
 ; flight distance for unsuccessful scout is calculated here:
 ask foragerSquadrons with [activity = "searching"]
 [; the search length [m] of the foraging trip is added to today's km and the lifetime km
(mileometer):
 set km_today km_today + (SEARCH_LENGTH_M / 1000)
 set mileometer mileometer + (SEARCH_LENGTH_M / 1000) ; mileometer: [km]

 ; honey store in the colony is reduced to reflect the energy consumed during the trip:
 set HoneyEnergyStore HoneyEnergyStore - (SEARCH_LENGTH_M * FLIGHTCOSTS_PER_m *
SQUADRON_SIZE)
 set ColonyTripDurationSum ColonyTripDurationSum + (SEARCH_LENGTH_M / FLIGHT_VELOCITY)
; sums up time of a search trip

 ; sums up # foragers doing a trip & unsuccessful foraging trips:
 set ColonyTripForagersSum ColonyTripForagersSum + 1
 set EmptyFlightsToday EmptyFlightsToday + SQUADRON_SIZE
]

 ; energy consumption for successful foragers:
 ask foragerSquadrons with
 [activity = "bringingNectar"
 or activity = "bringingPollen"]
 [
 if pollenForager = false ; ask NECTAR foragers
 [
 ask flowerPatch knownNectarPatch
 [; flightCostsNectar is a flowerPatch variable, reflecting distance and handling time
 set energyConsumption flightCostsNectar
 ; energy is used, according to the flight costs of the patch
 set ColonyTripDurationSum ColonyTripDurationSum + tripDuration + TIME_UNLOADING

] ; adds duration of this nectar trip to the sum of all trips performed during this foraging round so
far
]
 if pollenForager = true ; ask POLLEN foragers
 [
 ask flowerPatch knownPollenPatch
 [
 set energyConsumption flightCostsPollen
 ; energy is used, according to the flight costs of the patch
 set ColonyTripDurationSum ColonyTripDurationSum + tripDurationPollen +
TIME_UNLOADING_POLLEN
] ; adds duration of this pollen trip to the sum of all trips performed during this foraging round
so far
]

 ; colony's honey store is decreased:
 set HoneyEnergyStore HoneyEnergyStore - (energyConsumption * SQUADRON_SIZE)
 ; sums up # foragers doing a trip:
 set ColonyTripForagersSum ColonyTripForagersSum + 1
]

end

;
**
**

to Foraging_mortalityProc
 ; mortality of foragers during their foraging trip, counts # dying foragers and their lifespan
 let emptyTripDuration SEARCH_LENGTH_M / FLIGHT_VELOCITY ; [s] = 10 min

 ask foragerSquadrons with [activity = "searching"]
 [; mortality risk of unsuccessful scouts depends on their time spent for searching
 ; mortality risk calculated as probability to NOT survive every single second of the foraging trip:
 if random-float 1 < 1 - ((1 - MORTALITY_FOR_PER_SEC) ^ emptyTripDuration)
 [; deaths are counted and the lifespans summed up to later calculate a mean lifespan:
 set DeathsAdultWorkers_t DeathsAdultWorkers_t + SQUADRON_SIZE
 set DeathsForagingToday DeathsForagingToday + SQUADRON_SIZE
 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t + (age * SQUADRON_SIZE)
 die
]
]
 ; this is similar for NECTAR foragers, but here with a patch specific mortalityRisk
 ask foragerSquadrons with [activity = "bringingNectar"]
 [
 if random-float 1 < ([mortalityRisk] of flowerPatch knownNectarPatch)
 [
 set DeathsAdultWorkers_t DeathsAdultWorkers_t + SQUADRON_SIZE
 set DeathsForagingToday DeathsForagingToday + SQUADRON_SIZE

 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t + (age * SQUADRON_SIZE)
 die
]
]
 ; and again for POLLEN foragers, with a patch specific mortalityRiskPollen:
 ask foragerSquadrons with [activity = "bringingPollen"]
 [
 if random-float 1 < ([mortalityRiskPollen] of flowerPatch knownPollenPatch)
 [
 set DeathsAdultWorkers_t DeathsAdultWorkers_t + SQUADRON_SIZE
 set DeathsForagingToday DeathsForagingToday + SQUADRON_SIZE
 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t + (age * SQUADRON_SIZE)
 die
]
]
end;

;
**
**

to Foraging_dancingProc
 ; foragers dance for a good patch and recruit 2 pollen foragers or up to 5 nectar foragers
 ; to the advertised patch

 let EEFdancedPatch -999 ; correct number set later
 ; energetic efficiency of the flower patch danced for (set to nonsense number as control)

 let tripDurationDancedPatch -999 ; correct number set later
 ; trip duration to a pollen patch

 let patchNumberDanced -999 ; correct number set later
 ; ...and the number of that flower patch

 ask foragerSquadrons with
 [activity = "bringingNectar"
 or activity = "bringingPollen"]
 ; successful pollen or nectar foragers are addressed
 [
 if activity = "bringingNectar" ; NECTAR FORAGERS
 [
 set EEFdancedPatch [EEF] of flowerPatch knownNectarPatch
 set patchNumberDanced knownNectarPatch
 ; successful foragers dance; they communicate EEF and ID of flowerPatch

 let danceFollowersNectarNow
 random-poisson [danceFollowersNectar] of flowerPatch knownNectarPatch

 if [danceFollowersNectarNow] of flowerPatch knownNectarPatch >= 1
 [

 set activityList lput "Dn" activityList
]

 if (count foragerSquadrons with
 [activity = "resting"]) >=
 [danceFollowersNectarNow] of flowerPatch knownNectarPatch
 ; only if enough resting foragers are present, there will be dances
 [
 ask n-of
 ([danceFollowersNectarNow] of flowerPatch knownNectarPatch)
 foragerSquadrons with [activity = "resting"]
 ; depending on EEF of the patch, (0-5) resting foragers will follow the dance
 [
 ifelse knownNectarPatch = -1
 [; unexperienced foragers will always accept the advertised patch:
 set knownNectarPatch patchNumberDanced
 set activity "recForaging"
 set pollenForager false
 ; and become a nectar forager
 set activityList lput "rFnNF" activityList
]
 [
 ifelse EEFdancedPatch > [EEF] of flowerPatch knownNectarPatch
 ; if(2) ; experienced foragers: if the advertised patch has higher EEF
 ; than the known flowerPatch,
 [
 set knownNectarPatch patchNumberDanced
 ; the dance follower will switch to new patch

 set pollenForager false
 ; and become a nectar forager

 set activity "recForaging"
 set activityList lput "rFnxNF" activityList
]
 [; ELSE 2 (i.e. experienced foragers, knowing a BETTER patch) are activated
 set activity "expForaging"
 set activityList lput "Xnr" activityList
] ; else (2) they become active foragers to their own, known patch
]
]
]
]

 if activity = "bringingPollen" ; POLLEN FORAGERS
 [
 set tripDurationDancedPatch [tripDurationPollen] of flowerPatch knownPollenPatch
 set patchNumberDanced knownPollenPatch
 if POLLEN_DANCE_FOLLOWERS >= 1 ; pollen foragers dance ALWAYS (as
POLLEN_DANCE_FOLLOWERS = 2)
 [

 set activityList lput "Dp" activityList
]

 if (count foragerSquadrons with [activity = "resting"])
 >= POLLEN_DANCE_FOLLOWERS
 ; only if enough resting foragers are present, there will be dances
 [
 ask n-of POLLEN_DANCE_FOLLOWERS foragerSquadrons
 with [activity = "resting"]
 ; # pollen dance followers: constant and independent of patch distance!!
 [
 ifelse knownPollenPatch = -1
 [; unexperienced forager will always accept the advertised patch:
 set knownPollenPatch patchNumberDanced
 set activity "recForaging"

 ; and become a pollen forager:
 set pollenForager true
 set activityList lput "rFpPF" activityList
]
 [; if(2) ; experienced foragers: if the advertised patch offers a
 ; shorter trip duration than the known pollen patch..
 ifelse tripDurationDancedPatch < [tripDurationPollen]
 of flowerPatch knownPollenPatch
 [; .. then the dance follower will switch to new patch
 set knownPollenPatch patchNumberDanced
 ; and become a pollen forager:
 set pollenForager true

 set activity "recForaging"
 set activityList lput "rFpxPF" activityList
]
 [; else (2) they become active foragers to their own, known patch:
 set activity "expForaging"
 set activityList lput "Xpr" activityList
]
]
]
]
]
]

end;

;
**
**

to Foraging_unloadingProc
 ; successful foragers increase honey or pollen store of the colony and become experienced foragers

 ask foragerSquadrons with [activity = "bringingNectar"]
 [
 set HoneyEnergyStore HoneyEnergyStore + (cropEnergyLoad * SQUADRON_SIZE)

 if HoneyEnergyStore > MAX_HONEY_ENERGY_STORE
 [
 set HoneyEnergyStore MAX_HONEY_ENERGY_STORE
] ; honey store can't be larger than maximum

 set activityList lput "bN" activityList
 set cropEnergyLoad 0
 set activity "expForaging"
 set activityList lput "Xn" activityList
]

 ask foragerSquadrons with [activity = "bringingPollen"]
 [
 set PollenStore_g PollenStore_g + (collectedPollen * SQUADRON_SIZE)
 set collectedPollen 0
 set activityList lput "bP" activityList
 set activity "expForaging"
 set activityList lput "Xp" activityList
]

 ask foragerSquadrons with [activity = "searching"]
 [
 set activityList lput "E" activityList
] ; unsuccessful souts return empty

end;

;
**
**

to ForagersLifespanProc
 ; foragers also die due to age, max. travelled distance or by chance inside
 ; the colony; dying foragers are counted to calculate mean lifespan

 ask foragerSquadrons
 [
 if age >= LIFESPAN
 [
 set DeathsAdultWorkers_t DeathsAdultWorkers_t + SQUADRON_SIZE
 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t + (age * SQUADRON_SIZE)
 die
]

 if mileometer >= MAX_TOTAL_KM

 [
 set DeathsAdultWorkers_t DeathsAdultWorkers_t + SQUADRON_SIZE
 set DeathsForagingToday DeathsForagingToday + SQUADRON_SIZE
 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t + (age * SQUADRON_SIZE)
 die
]

 let dailyRiskToDie MORTALITY_INHIVE
 ; the daily background mortality of (healthy) foragers, which is equal to MORTALITY_INHIVE of
the inhive bees

 if infectionState = "infectedAsPupa"
 [
 set dailyRiskToDie MORTALITY_INHIVE_INFECTED_AS_PUPA
] ; except for infected as pupa foragers, which have a higher mortality

 if infectionState = "infectedAsAdult"
 [
 set dailyRiskToDie MORTALITY_INHIVE_INFECTED_AS_ADULT
] ; except for infected as adult foragers, which have a higher mortality

 if random-float 1 < dailyRiskToDie
 [
 set DeathsAdultWorkers_t DeathsAdultWorkers_t + SQUADRON_SIZE
 set SumLifeSpanAdultWorkers_t SumLifeSpanAdultWorkers_t + (age * SQUADRON_SIZE)
 die
]
] ; ask foragerSquadrons
end;

;
**
**

;
==
==
==========
; =============== END OF IBM FORAGING SUBMODEL
== END OF IBM
FORAGING SUBMODEL ===========================
;
==
==
==========

;
**
**

;
**
**

; THE VARROA MITE SUBMODEL ... THE VARROA
MITE SUBMODEL
;
**
**

to MiteProc ; calls the Varroa related procedures
 CreateMiteOrganisersProc
 CountingProc ; updating number of brood & adults of drones & workers
 MitesInvasionProc
 MitePhoreticPhaseProc
 MiteDailyMortalityProc
 MiteOrganisersUpdateProc
end

;
**
**

to CreateMiteOrganisersProc
 ; called by MiteProc, creates a single miteOrganiser turtle, that
 ; stores info on number and distribution of mites newly invaded into the brood cells

 create-miteOrganisers 1
 [
 setxy -1 -7
 set heading 0
 set size 1.3
 set color 33.5
 set shape "VarroaMite03" ;"Virus1" ;"VarroaMite03"
 set workerCellListCondensed n-values (MAX_INVADED_MITES_WORKERCELL + 1) [0]
 ; +1 as also the number of mite free cells is stored in this list

 set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [0]
 ; +1 as also the number of mite free cells is stored in this list

 set label-color white
 set cohortInvadedMitesSum 0
 ; sum of all mites that invaded a worker or drone cell on the same Day

 set invadedMitesHealthyRate PhoreticMitesHealthyRate
 ; rate of healthy mites in this cohort of invading mites equals the rate of healthy

 ; phoretic mites on this day

 set age INVADING_WORKER_CELLS_AGE
 ; "age" refers to age of invaded brood. If age for invasion differs in
 ; worker and drone brood..

 if INVADING_DRONE_CELLS_AGE < INVADING_WORKER_CELLS_AGE
 [
 set age INVADING_DRONE_CELLS_AGE
] ; ..then age refers to the younger of both
]
end

;
**
**

to MitesInvasionProc
 ; called by MiteProc calculates the number of phoretic mites that
 ; enter worker and drone brood cells on this day based on: Calis et al. 1999, Martin 2001

 let factorDrones 6.49 ; (Boot et al. 1995, Martin 2001)
 let factorWorkers 0.56 ; (Boot et al. 1995, Martin 2001)
 let adultsWeight_g (TotalIHbees + TotalForagers) * WEIGHT_WORKER_g
 ; weight of all adult worker bees
 let invadingBroodCellProb 0
 ; probability for a phoretic mite to enter any suitable brood cell
 let invadingWorkerCellProb 0
 ; probaility to invade a worker cell (only if any cell was invaded)
 let suitableWorkerCells 0
 let suitableDroneCells 0
 ; number of worker and drone cells, that are suitable for mite invasion
 let rD 0
 let rW 0
 ; rD, rW: Rate of invasion into Drone cells and Worker cells (Boot et al. 1995)

 ask larvaeCohorts with [age = INVADING_WORKER_CELLS_AGE]
 [
 set suitableWorkerCells number
] ; (age = 8) mites enter worker larvae cells ~1d before capping (at 9d age) (Boot, Calis, Beetsma
1992)

 ask droneLarvaeCohorts with [age = INVADING_DRONE_CELLS_AGE]
 [
 set suitableDroneCells number
] ; (age = 8) mites enter drone larvae cells ~ 2d before capping (at 10d age) (Boot, Calis, Beetsma
1992)

 if adultsWeight_g > 0
 [; invasion rates in worker and drone cells:

 set rW factorWorkers * (suitableWorkerCells / adultsWeight_g) ; (Martin 1998, 2001; Calis et
al.1999)
 set rD factorDrones * (suitableDroneCells / adultsWeight_g)
]

 let exitingMites 0
 ; # mites, that theoretically should invade cells but leave it immediatly,
 ; because the cell is already invaded by the max. number of mites

 let workerCellListTemporary n-values suitableWorkerCells [0]
 ; two temporary lists of all suitable worker/drone cells, to store
 ; the number of mites in each cell..

 let droneCellListTemporary n-values suitableDroneCells [0]
 ; .. of which later the number of cells invaded by 0, 1, 2.. mites can be calculated

 let cell -1
 ; stores randomly chosen cell, which is invaded by a mite in the below
 ; "repeat phoreticMites.." process. -1 will be changed to a random number >= 0

 set InvadingMitesWorkerCellsTheo 0
 set InvadingMitesDroneCellsTheo 0
 set invadingBroodCellProb (1 - (exp (-(rW + rD))))
 ; probability for a phoretic mite to enter a brood cell; similar to
 ; Martin 2001, however: we use probability instead of proportion

 if rW + rD > 0 ; if invasion takes place..
 [
 set invadingWorkerCellProb (rW / (rW + rD))
]

 ; based on the Boot/Martin/Calis rates of cell invasion, which are used as probabilities,
 ; it is calculated how many phoretic mites enter a brood cell, and whether it is
 ; a drone or a worker cell; each invading mite is then associated with a random brood
 ; cell number (WorkerCellsInvasionList), finally, the mites in each "brood cell" are
 ; counted and saved in the condensed nMitesInCellsList
 repeat PhoreticMites
 [
 if random-float 1 < invadingBroodCellProb
 ; mites have a chance to enter a brood cell
 [
 ifelse random-float 1 < invadingWorkerCellProb ; the brood cell might be a WORKER cell
 [
 set InvadingMitesWorkerCellsTheo InvadingMitesWorkerCellsTheo + 1
 ; mites entering worker cells are counted

 set cell random suitableWorkerCells
 ; randomly, one of the suitable WORKER cells is invaded by a mite

 set WorkerCellListTemporary replace-item cell WorkerCellListTemporary
 (item cell WorkerCellListTemporary + 1)

 ; this list contains all worker cells and the number of mites
 ; invading into each cell
]
 [
 ; ELSE: invasion into DRONE cell
 set InvadingMitesDroneCellsTheo InvadingMitesDroneCellsTheo + 1
 set cell random suitableDroneCells
 ; randomly, one of the suitable drone cells is invaded by a mite

 set DroneCellListTemporary replace-item cell DroneCellListTemporary
 (item cell DroneCellListTemporary + 1)
 ; this list contains all drone cells and the number of mites
 ; invading into each cell
]
]
]

 ; excess of invaded mites: # mites in each cells is restricted to MAX_INVADED_MITES:
 let counter 0
 foreach WorkerCellListTemporary
 [
 ; (note: items are addressed in ordered way - NOT randomly)
 if ? > MAX_INVADED_MITES_WORKERCELL
 [
 set exitingMites exitingMites + (? - MAX_INVADED_MITES_WORKERCELL)
 ; if too many mites in cells: they leave the cell ("?": # of mites in the cell)

 set WorkerCellListTemporary replace-item
 counter WorkerCellListTemporary MAX_INVADED_MITES_WORKERCELL
 ; .. mites left in the cell = max. mites in worker cell
]

 set counter counter + 1
]
 set InvadingMitesWorkerCellsReal InvadingMitesWorkerCellsTheo - exitingMites

 ; and the same for the drones..
 set counter 0 ; resetting the counter

 foreach DroneCellListTemporary
 [
 if ? > MAX_INVADED_MITES_DRONECELL
 [
 set exitingMites exitingMites + (? - MAX_INVADED_MITES_DRONECELL)
 ; if too many mites in cells: they leave the cell ("?": # of mites in the cell)

 set DroneCellListTemporary replace-item counter
 DroneCellListTemporary MAX_INVADED_MITES_DRONECELL
 ; .. mites left in the cell = max. mites in drone cell
]
 set counter counter + 1

]

 set InvadingMitesDroneCellsReal InvadingMitesDroneCellsTheo
 - exitingMites
 + (InvadingMitesWorkerCellsTheo - InvadingMitesWorkerCellsReal)
 ; mites invaded drone cells = mites theor. invading drone cells
 ; - mites exiting drone&worker cells
 ; + mites exiting worker cells (here: exitingMites: sum of worker&drone cell mites!)

 set PhoreticMites PhoreticMites
 - InvadingMitesWorkerCellsTheo
 - InvadingMitesDroneCellsTheo
 + exitingMites
 ; # of phoretic mites left (=phor.mites - invading mites
 ; + mites immediately leaving cells and become phoretic again

 if PhoreticMites < 0
 [
 user-message "Error in MitesInvasionProc - negative number of phoretic Mites"
 set BugAlarm true
] ; assertion

 let memory -1 ; -1: = no cohort invaded

 ask miteOrganisers with [age = INVADING_WORKER_CELLS_AGE]
 [
 foreach workerCellListTemporary
 ; checks the list that contains all worker brood cells for
 ; how many mites have entered..
 [
 set workerCellListCondensed replace-item ? workerCellListCondensed
 ((item ? workerCellListCondensed) + 1)
] ; sums up the number of cells entered by 0, 1,2..n mites in the mitesOrganisers own list

 set cohortInvadedMitesSum cohortInvadedMitesSum + InvadingMitesWorkerCellsReal

 let whoMO who ; stores the "who" of the current miteOrganiser
 ask larvaeCohorts with [age = INVADING_WORKER_CELLS_AGE]
 [
 set invadedByMiteOrganiserID whoMO
 set memory who
]
 set invadedWorkerCohortID memory
] ; "ask miteorganisers ..."

 ask miteOrganisers with [age = INVADING_DRONE_CELLS_AGE]
 [
 foreach droneCellListTemporary
 ; checks the list that contains all drone brood cells for
 ; how many mites have entered..
 [

 set droneCellListCondensed replace-item ? droneCellListCondensed
 ((item ? droneCellListCondensed) + 1)
] ; sums up the cell entered by 0, 1,2..n mites in the mitesOrganisers own list

 set cohortInvadedMitesSum cohortInvadedMitesSum + InvadingMitesDroneCellsReal
 set memory -1 ; -1: = no cohort invaded

 ask droneLarvaeCohorts with [age = INVADING_DRONE_CELLS_AGE]
 [
 set memory who
]
 set invadedDroneCohortID memory
 let whoMO who ; stores the "who" of the current miteOrganiser

 ask droneLarvaeCohorts with [age = INVADING_DRONE_CELLS_AGE]
 [
 set invadedByMiteOrganiserID whoMO
]
] ; "ask miteOrganisers with ..."

 if (PhoreticMites + InvadingMitesWorkerCellsReal
 + InvadingMitesDroneCellsReal) > 0 ; avoid div 0!
 [
 set PropNewToAllPhorMites NewReleasedMitesToday
 / (PhoreticMites + InvadingMitesWorkerCellsReal + InvadingMitesDroneCellsReal)
] ; Proportion of new emerged phoretic mites (today) to all phoretic mites
 ; present (needed in the MitePhoreticPhaseProc to determine # of newly infected phoretic mites
etc)
end

;
**
**

to-report MiteDensityFactorREP [ploidyMiteOrg mitesIndex]
 ; reports the (single) density factor for a certain number of invaded mites
 ; depending on ploidy of bee brood and chosen reproduction model

 let dataList []

 if MiteReproductionModel = "Martin"
 [ifelse ploidyMiteOrg = 2
 [set dataList [0 1 0.91 0.86 0.60]]
 ; workers (list length: 5) [0 1 0.91 0.86 0.60]
 ; from Martin 1998, Tab. 4; first value (0) doesn't matter, as no
 ; mother mite invaded these cells

 [set dataList [0 1 0.84 0.65 0.66]]
] ; drones (list length: 5) [0 1 0.84 0.65 0.66] from Martin 1998, Tab. 4

 if MiteReproductionModel = "Fuchs&Langenbach"
 [
 ifelse ploidyMiteOrg = 2
 [set dataList [0 1 0.96 0.93 0.89 0.86 0.82 0.79 0]]
 ; workers (list length: 9) calculated from Fuchs&Langenbach 1989 Tab.III
 [set dataList [0 1 0.93 0.86 0.80 0.73 0.66 0.59 0.52 0.45 0.39 0.32 0.25 0.18 0.11 0.05 0]]
] ; (list length: 17) calculated from Fuchs&Langenbach 1989 Tab.III

 if MiteReproductionModel = "No Mite Reproduction" ; only for model testing
 [
 ifelse ploidyMiteOrg = 2
 [set dataList [0 1 1 1 1 1]] ; workers (list length: 6)
 [set dataList [0 1 1 1 1 1]]
] ; drones (list length: 6)

 if MiteReproductionModel = "Martin+0"
 ; like Martin, but max # of mites in brood cell is increased by
 ; one with a rel. reprod. rate of 0 (= 0 at the end of the list)

 [; Martin Test with 0
 ifelse ploidyMiteOrg = 2
 [set dataList [0 1 0.91 0.86 0.60 0]]
 ; workers (list length: 6) [0 1 0.91 0.86 0.60 0]
 ; from Martin 1998, Tab. 4; first value (0) doesn't matter, as no
 ; mother mite invaded these cells
 [set dataList [0 1 0.84 0.65 0.66 0]]
] ; drones (list length: 6) [0 1 0.84 0.65 0.66 0] from Martin 1998, Tab. 4

 report item mitesIndex dataList

end

;
**
**

to-report MiteOffspringREP [ploidyMiteOrg]
 ; reports offspring per mite depending on ploidy of bee brood and chosen reproduction model

 let result 0
 if ploidyMiteOrg != 1 and ploidyMiteOrg != 2
 [
 set BugAlarm true
 type "BUG ALARM in MiteOffspringREP! Wrong ploidyMiteOrg: "
 print ploidyMiteOrg
]

 if MiteReproductionModel = "Martin" or MiteReproductionModel = "Martin+0"
 [
 ifelse ploidyMiteOrg = 2

 [set result 1.01]
 ; workers (1.01: Martin 1998; fertilisation already taken into account)

 [set result 2.91]
] ; drones (2.91: Martin 1998; fertilisation already taken into account)

 if MiteReproductionModel = "Fuchs&Langenbach"
 [
 ifelse ploidyMiteOrg = 2
 [set result 1.4 * 0.95]
 ; workers (1.4: Fuchs&Langenbach 1989; of which 5% are
 ; unfertilised (Martin 1998 p.271))
 [set result 2.21 * 0.967]
] ; drones (2.21: Fuchs&Langenbach 1989; of which 3.3% are unfertilised (Martin 1998 p.271))

 if MiteReproductionModel = "No Mite Reproduction" ; only for model testing
 [
 ifelse ploidyMiteOrg = 2
 [set result 0] ; workers
 [set result 0]
] ; drones

 report result
end

;
**
**

; MitesReleaseProc: determines how many healthy and infected mites emerge from cells with a)
dead or b) emerging bees
; CALLED BY: WorkerLarvaeDevProc (dying), DroneLarvaeDevProc (dying), WorkerPupaeDevProc (2x,
for dying & emerging brood)
; DronePupaeDevProc (2x, for dying & emerging brood), BroodCareProc (4x, dying of drone & worker
larvae & pupae)

; .. all these procedures are called BEFORE the mite module (MiteProc)!

to MitesReleaseProc [miteOrganiserID ploidyMiteOrg diedBrood releaseCausedBy]
 ; 1. rate of healthy mites in the cellList 2. the relevant worker/drone
 ; cellListCondensed 3. # died broodCells (0..n) 4. "emergingBrood" or "dyingBrood"

 let cellListCondensed []
 ; to not double the code for worker and drones, the local variable
 ; cellListCondensed is defined which stores EITHER the workerCellListCondensed
 ; OR the droneCellListCondensed

 let mitesInfectedSumUncappedCells 0
 ; sums up the infected mites of the current cohort

 let mitesHealthySumUncappedCells 0 ; sums up the healthy mites of the current cohort
 let mitesHealthy&InfectedSumUncappedCells 0
 ; sums up the healthy and infected mites of the current cohort

 let nPhoreticMitesBeforeEmergenceHealthy round (PhoreticMitesHealthyRate * PhoreticMites)
 ; saves the number healthy phoretic mites before the new mites emerge from their
 ; cells - necessary to calculate new PhoreticMitesHealthyRate

 let nPhoreticMitesBeforeEmergenceInfected PhoreticMites -
nPhoreticMitesBeforeEmergenceHealthy
 ; saves the number infected phoretic mites before the new mites emerge from
 ; their cells - necessary to calculate new PhoreticMitesHealthyRate

 let healthyRateMiteOrg 0
 ; proportion of healthy mites in the current cohort (miteOrganiser)

 let totalCells 0
 ; number of brood cells in the current cohort

 let releasedPupaeCohortsID -1

 let repetitions MAX_INVADED_MITES_WORKERCELL + 1
 ; to count the brood cells; (for worker cells); +1 as cells can also bee mite free
 if ploidyMiteOrg = 1
 [
 set repetitions MAX_INVADED_MITES_DRONECELL + 1
] ; ..the same for drone cells, +1 as cells can also bee mite free

 ; to save the required "cellListCondensed" and to determine the "who"
 ; of the affected (worker or drone) pupaeCohort:
 ask miteOrganisers with [who = miteOrganiserID]
 [
 ifelse ploidyMiteOrg = 1
 [
 set cellListCondensed droneCellListCondensed
 ; IF DRONES: local cellListCondensed = droneCellListCondensed
 set releasedPupaeCohortsID invadedDroneCohortID
] ; ... and affected droneCohort is the miteOrganisers "invadedDroneCohortID"
 [
 set cellListCondensed workerCellListCondensed
 ; ELSE WORKERS: local cellListCondensed = workerCellListCondensed
 set releasedPupaeCohortsID invadedWorkerCohortID
] ; ... and affected workerCohort is the miteOrganisers "invadedWorkerCohortID"
 set healthyRateMiteOrg invadedMitesHealthyRate
 ; saves the rate of healthy mites invaded to the current miteOrganiser
]

 let i 0
 repeat repetitions
 ; repetitions = MAX_INVADED_MITES_WORKER/DRONE_CELL + 1
 [

 ; counts the # of cells in the cellList
 set totalCells totalCells + (item i cellListCondensed)
 set i i + 1
]

 let uncappedCells 0 ; number of cells that are uncapped ...
 if releaseCausedBy = "dyingBrood" [set uncappedCells diedBrood]
 ; .. because some pupae died..

 if releaseCausedBy = "emergingBrood" [set uncappedCells totalCells]
 ; .. or because all pupae emerge

 if releaseCausedBy != "dyingBrood" and releaseCausedBy != "emergingBrood"
 [
 set BugAlarm true
 type "BUG ALARM in ReleaseMitesProc(1)! releaseCausedBy: "
 print releaseCausedBy
] ; assertion

 repeat uncappedCells
 [
 ; uncapped brood cells are randomly chosen from all brood cells of
 ; this cohort. These cells may contain 0,1,2..invadedMitesCounter mites.
 ; These mother mites are released from the cell WITH OR WITHOUT
 ; reproduction and become phoretic

 let randomCell (random totalCells) + 1
 ; choses a random cell -> 1..totalCells (+1 as: random n = 0, 1, ..n-1)
 ; (totalCells is decreased at the end of each repetition by 1)

 let cellCounter 0
 let allMitesInSingleCell -1
 ; starting value of allMitesInSingleCell: -1 as it is increased by 1 in the
 ; following "while" loop
 ; allMitesInSingleCell: # of mites that invaded the randomly chosen cell

 while [cellCounter < randomCell]
 ; determines, by how many mites the "random cell"
 ; is invaded: sums up the # of cells invaded by 0 mites (1st loop)
 ; by 1 mite (2nd loop) etc. until the cellCounter >= randomCell
 ; the number of mites in random cell is then allMitesInSingleCell
 [
 set allMitesInSingleCell allMitesInSingleCell + 1
 ; in 1st loop: allMitesInSingleCell = 0! (i.e. item 0 = first item in list = 0 mites)
 ; in 2nd loop: 1 mite etc.

 set cellCounter cellCounter + (item allMitesInSingleCell cellListCondensed)
 ; cellCounter is increased by the # of cells with x mites in it
 ; (x = allMitesInSingleCell, i.e. 0,1,2..n)
]

 ; how many of the released mites are infected? -> 1. how many infected
 ; mites entered? 2. did they infect the larva? 3. how many healthy mites become
 ; infected by the infected larva?
 let mitesIndex allMitesInSingleCell
 ; to address the correct item in the cellListCondensed after mite
 ; reproduction (i.e. when allMitesInSingleCell has changed)

 let pupaInfected false ; a young larva is healthy
 let infectedMitesInSingleCell 0
 ; the number of mites that were diseased on day of cell invasion

 repeat allMitesInSingleCell
 [
 ; invaded mites might be infected: repeat over all mites in the current brood cell
 if random-float 1 > healthyRateMiteOrg
 [
 set infectedMitesInSingleCell infectedMitesInSingleCell + 1
 ; this invaded mite was infected when invading the cell and is now counted as infected
]
]

 let healthyMitesInSingleCell allMitesInSingleCell - infectedMitesInSingleCell
 ; healthy invaded mites are all invaded mites minus infected ones

 if random-float 1 > (1 - VIRUS_TRANSMISSION_RATE_MITE_TO_PUPA) ^ infectedMitesInSingleCell
 [
 set pupaInfected true
] ; as soon as at least 1 infected mite successfully infects the bee pupa, the bee pupa is infected

 ; PUPA ALIVE OR DEAD? (either died normally, died due to lack of nursing or killed by virus
 let pupaAlive 1 ; (0 or 1) 1: = "yes", pupa is alive 0: = "no", pupa is dead
 if pupaInfected = true
 [
 if random-float 1 < VIRUS_KILLS_PUPA_PROB
 [
 set pupaAlive 0
]
] ; infected pupa might be killed by the virus. In this case:
 ; no offspring mites but still transmission of viruses to healthy mites in this cell
 ; (at least for DWV)

 if releaseCausedBy = "dyingBrood"
 [
 set pupaAlive 0
] ; larva/pupa is dead, if MitesReleaseProcis called, BECAUSE the brood died..

 if releaseCausedBy = "emergingBrood" and allMitesInSingleCell > 0
 [
 ; callow bees are emerging and with them the invaded mother mites and their offspring
 if pupaAlive = 0
 [

 ask turtles with [who = releasedPupaeCohortsID]
 [
 set number number - 1
 ; pupa died, hence the number of bees in this pupae cohort is reduced by 1
 set number_healthy number_healthy - 1
 ; pupa dies due to virus infection and has previously been healthy
 set Pupae_W&D_KilledByVirusToDay Pupae_W&D_KilledByVirusToDay + 1
]
]

 ; surviving but infected pupae:
 if pupaAlive = 1 and pupaInfected = true
 [
 ask turtles with [who = releasedPupaeCohortsID]
 [
 set number_infectedAsPupa number_infectedAsPupa + 1
 ; the bee was infected as pupa
 set number_healthy number_healthy - 1
 ; the pupa has become infected and is no longer healthy
]
]

 let averageOffspring
 random-poisson (MiteOffspringREP ploidyMiteOrg * MiteDensityFactorREP ploidyMiteOrg
mitesIndex)
 ; average # offspring of a single mother mite in the single cell (depends on ploidy of bee pupa
and # invaded mites)

 set healthyMitesInSingleCell allMitesInSingleCell
 * averageOffspring
 ; Offspring: all mites in cell x reprod. rate. NOTE: also infected mites
 ; may have healthy offspring! (MiteOffspringREP: reports # offspring for
 ; 1 mite in single invaded cell, for drones or workers)
 * pupaAlive
 ; pupaAlive = 1 or 0; if pupa is alive: normal mite reproduction, if dead:
 ; offspring = 0
 + healthyMitesInSingleCell ; + mother mites

 set healthyMitesInSingleCell round healthyMitesInSingleCell
 ; this line is NOT NECESSARY as averageOffspring is integer!
 set allMitesInSingleCell healthyMitesInSingleCell + infectedMitesInSingleCell
 ; update of total mites in the cell
] ; END of "if releaseCausedBy = 'emergingBrood' "

 if pupaAlive = 1 and pupaInfected = true
 [
 ; if the bee pupa was infected by an infected mite AND IS STILL ALIVE,
 ; then the healthy mites (invaded or offspring) might become infected too

 repeat healthyMitesInSingleCell
 [

 ; all healthy mites have then the risk to become infected too
 if random-float 1 < VIRUS_TRANSMISSION_RATE_PUPA_TO_MITES
 ; if random number < the transmission rate from bee pupa to mite, the healthy
 ; mite becomes infected
 [
 set healthyMitesInSingleCell healthyMitesInSingleCell - 1
 ; hence: the number of healthy released mites decreases by 1..

 set infectedMitesInSingleCell infectedMitesInSingleCell + 1
] ; .. and the number of infected released mites increases by 1
] ; end of 'repeat sumInvadedMitesHealthy'
] ; end of 'IF pupaInfected' - now the numbers of healthy and infected (mother) mites in
 ; single cell is known (= healthyMitesInSingleCell and infectedMitesInSingleCell)

 if healthyMitesInSingleCell + infectedMitesInSingleCell != allMitesInSingleCell
 [
 set BugAlarm true
 type "BUG ALARM in ReleaseMitesProc(2)! allMitesInSingleCell: "
 type allMitesInSingleCell
 type " infectedMitesInSingleCell: "
 type infectedMitesInSingleCell
 type " healthyMitesInSingleCell: "
 print healthyMitesInSingleCell
]

 ; MITE FALL:
 let miteFallProb MITE_FALL_DRONECELL
 if ploidyMiteOrg = 2
 [
 set miteFallProb MITE_FALL_WORKERCELL
] ; probabilities of mites to fall from comb, depending on cell type

 repeat healthyMitesInSingleCell
 [; determined for healthy and infected mites separately
 if random-float 1 < miteFallProb
 [
 set healthyMitesInSingleCell healthyMitesInSingleCell - 1
 set allMitesInSingleCell allMitesInSingleCell - 1
 set DailyMiteFall DailyMiteFall + 1
]
]

 repeat infectedMitesInSingleCell
 [
 if random-float 1 < miteFallProb
 [
 set infectedMitesInSingleCell infectedMitesInSingleCell - 1
 set allMitesInSingleCell allMitesInSingleCell - 1
 set DailyMiteFall DailyMiteFall + 1
]
]

 set mitesHealthySumUncappedCells mitesHealthySumUncappedCells + healthyMitesInSingleCell
 ; sums up all healthy mites emerging from current cohort
 ; (set to 0 at beginning of this procedure)

 set mitesInfectedSumUncappedCells mitesInfectedSumUncappedCells + infectedMitesInSingleCell
 ; same for infected mites (set to 0 at beginning of this procedure)

 set PhoreticMites PhoreticMites + allMitesInSingleCell
 ; mother mites in this uncapped brood cell are released from the brood
 ; cell and become phoretic..

 set mitesHealthy&InfectedSumUncappedCells
 mitesHealthy&InfectedSumUncappedCells + allMitesInSingleCell
 ; released mites from all brood cell in this cohort are totaled up

 set cellListCondensed replace-item mitesIndex cellListCondensed
 (item mitesIndex cellListCondensed - 1)
 ; .. and one brood cell is removed; mitesIdex: number of mother mites that
 ; invaded the brood cell

 if item mitesIndex cellListCondensed < 0
 [
 set BugAlarm true
 type "BUG ALARM in ReleaseMitesProc(3)! Negative number in cellListCondensed
(releaseMitesProc)! "
 show cellListCondensed
]

 set totalCells totalCells - 1
 ; number of total brood cells in this cohort is reduced by 1

 if totalCells < 0
 [
 set BugAlarm true
 type "BUG ALARM in ReleaseMitesProc(4)! Negative number of total cells in releaseMitesProc: "
 print totalCells
]
] ; END OF "REPEAT UNCAPPEDCELLS"

 set NewReleasedMitesToday
 NewReleasedMitesToday + mitesHealthy&InfectedSumUncappedCells
 ; # of newly released (mother+offspring) mites (only those that survived
 ; MiteFall) is summed up (set to 0 in DailyUpdateProc)

 if mitesInfectedSumUncappedCells + mitesHealthySumUncappedCells
 != mitesHealthy&InfectedSumUncappedCells
 [; assertion
 set BugAlarm true
 type "BUG ALARM in ReleaseMitesProc(5)! mitesInfectedSumUncappedCells: "
 type mitesInfectedSumUncappedCells

 type " mitesHealthySumUncappedCells: "
 type mitesHealthySumUncappedCells
 type " mitesHealthy&InfectedSumUncappedCells: "
 print mitesHealthy&InfectedSumUncappedCells
]

 if mitesInfectedSumUncappedCells < 0 or mitesHealthySumUncappedCells < 0
 [; assertion
 set BugAlarm true
 type "BUG ALARM in ReleaseMitesProc(6)! mitesInfectedSumUncappedCells: "
 type mitesInfectedSumUncappedCells
 type " mitesHealthySumUncappedCells: "
 type mitesHealthySumUncappedCells
 type " mitesHealthy&InfectedSumUncappedCells: "
 print mitesHealthy&InfectedSumUncappedCells
]

 ; Updating of the actual cell lists - either for the drone or for the worker brood:
 ask miteOrganisers with [who = miteOrganiserID]
 [; assertion
 if ploidyMiteOrg = 1 [set droneCellListCondensed cellListCondensed] ; IF drones
 if ploidyMiteOrg = 2 [set workerCellListCondensed cellListCondensed] ; IF workers
 if (ploidyMiteOrg != 1) and (ploidyMiteOrg != 2)
 [
 set BugAlarm true
 type "BUG ALARM in releaseMitesProc(7)! Wrong ploidyMiteOrg: "
 print ploidyMiteOrg
]
]
 ; UPDATE of the healthy mite rate:
 if (nPhoreticMitesBeforeEmergenceHealthy
 + nPhoreticMitesBeforeEmergenceInfected
 + mitesHealthySumUncappedCells
 + mitesInfectedSumUncappedCells) > 0
 [
 set PhoreticMitesHealthyRate
 (nPhoreticMitesBeforeEmergenceHealthy + mitesHealthySumUncappedCells)
 / (nPhoreticMitesBeforeEmergenceHealthy
 + nPhoreticMitesBeforeEmergenceInfected
 + mitesHealthySumUncappedCells
 + mitesInfectedSumUncappedCells)
]

 end

;
**
**

to MiteDailyMortalityProc

 ifelse (TotalEggs + TotalLarvae
 + TotalPupae + TotalDroneEggs
 + TotalDroneLarvae + TotalDronePupae) > 0 ; is it within brood period?
 [
 set PhoreticMites
 (PhoreticMites - random-poisson (PhoreticMites * MITE_MORTALITY_BROODPERIOD))
] ; IF brood is present
 [
 set PhoreticMites
 (PhoreticMites - random-poisson (PhoreticMites * MITE_MORTALITY_WINTER))
] ; ELSE: if no brood is present
end

;
**
**

to MitePhoreticPhaseProc
 ; infection of healthy worker bees via infected phoretic mites and of
 ; healthy phoretic mites via infected workers; Called daily by MiteProc

 let healthyPhoreticMites round (PhoreticMites * PhoreticMitesHealthyRate)
 ; # of healthy, phoretic mites is calculated from the rate of healthy phoretic mites

 let infectedPhoreticMites PhoreticMites - healthyPhoreticMites
 ; all other phoretic mites are infected

 let phoreticMitesPerIHbee 0

 if (TotalIHbees + InhivebeesDiedToday
 + NewForagerSquadronsHealthy
 + NewForagerSquadronsInfectedAsPupae
 + NewForagerSquadronsInfectedAsAdults > 0) ; avoid division by 0
 [
 set phoreticMitesPerIHbee
 (PhoreticMites - NewReleasedMitesToday)
 / (TotalIHbees + InhivebeesDiedToday
 + SQUADRON_SIZE *
 (NewForagerSquadronsHealthy
 + NewForagerSquadronsInfectedAsPupae
 + NewForagerSquadronsInfectedAsAdults
)
)
] ; phoretic mites are assumed to infest only inhive bees,
 ; "ih-bees" here = current ih-bees + ih-bees died today
 ; + ih-bees developed into foragers today!

 ; mites are released from inhive bees, if ih-bees die or develop into foragers:
 let mitesReleasedFromInhivebees
 precision

 (
 phoreticMitesPerIHbee
 * (InhivebeesDiedToday ; died ih-bees
 + SQUADRON_SIZE ; new foragers:
 * (NewForagerSquadronsHealthy
 + NewForagerSquadronsInfectedAsPupae
 + NewForagerSquadronsInfectedAsAdults
)
)
) 5

 if mitesReleasedFromInhivebees > PhoreticMites
 [
 set BugAlarm true
 type "BugAlarm!!! mitesReleasedFromInhivebees > PhoreticMites! mitesReleasedFromInhivebees:
"
 type mitesReleasedFromInhivebees
 type " PhoreticMites: "
 print PhoreticMites
]

 let healthyPhoreticMitesSwitchingHosts
 round
 (
 mitesReleasedFromInhivebees * PhoreticMitesHealthyRate
 + PhoreticMites * PropNewToAllPhorMites * PhoreticMitesHealthyRate
) ; # healthy phoretic mites that infest a bee. These are: newly
 ; released mites that haven't entered a brood cell (hence:
 ; "phoreticMites * PropNewToAllPhorMites") and phoretic mites, where the host
 ; bee just died; all multiplied with PhoreticMitesHealthyRate as only healthy
 ; mites are considered

 if healthyPhoreticMitesSwitchingHosts > healthyPhoreticMites
 [
 ; set BugAlarm true
 if (healthyPhoreticMitesSwitchingHosts - healthyPhoreticMites) > 1
 [
 set BugAlarm true ; if difference > 1 it can't be explained by rounding errors..
 type "BugAlarm!!! (MitePhoreticPhaseProc) healthyPhoreticMitesSwitchingHosts >
healthyPhoreticMites! healthyPhoreticMitesSwitchingHosts: "
 type healthyPhoreticMitesSwitchingHosts
 type " healthyPhoreticMites: "
 print healthyPhoreticMites
]

 set healthyPhoreticMitesSwitchingHosts healthyPhoreticMites
] ; to ensure that not more mites switch their hosts than actually present!

 ; healthy and infected IN-HIVE bees:
 let totalInfectedWorkers 0
 let totalHealthyWorkers 0

 ask IHbeeCohorts
 [
 set totalInfectedWorkers
 totalInfectedWorkers + number_infectedAsPupa + number_infectedAsAdult
 ; infected: either during pupal phase or as adults
 set totalHealthyWorkers totalHealthyWorkers + number_healthy
]

 ; Infection of healthy mites:
 let newlyInfectedMites 0
 ; the probability of healthy mites to become infected equals the proportion of
 ; infected in-hive workers to all in-hive workers:
 if (totalInfectedWorkers + totalHealthyWorkers) > 0 ; avoid division by 0!
 [
 repeat healthyPhoreticMitesSwitchingHosts
 [
 if random-float 1 < totalInfectedWorkers / (totalInfectedWorkers + totalHealthyWorkers)
 [
 set newlyInfectedMites newlyInfectedMites + 1
]
]
]

 ; infection of healthy adult workers - ONLY IN-HIVE WORKERS!
 let allInfectedMitesSwitchingHosts
 round
 (PhoreticMites * PropNewToAllPhorMites * (1 - PhoreticMitesHealthyRate)
 + mitesReleasedFromInhivebees * (1 - PhoreticMitesHealthyRate))
 ; # infected phoretic mites that infest a new bee. These are: newly
 ; released mites, that haven't entered a brood cell (hence: "phoreticMites
 ; * PropNewToAllPhorMites") and phoretic mites, where the host bee just died;
 ; all multiplied with (1 - PhoreticMitesHealthyRate) as only infected mites are considered

 ask IHbeeCohorts
 [
 if TotalIHbees > 0 and number > 0 ; avoid division by 0!
 [
 let infectedMitesSwitchingHostsInThisCohort
 (allInfectedMitesSwitchingHosts / TotalIHbees) * number
 ; # of infected mites switching their host in current bee cohort: # mites per ih-bee * number of
ih-bees
 ; in this cohort (assumes an equal distribution of mites)

 let newlyInfectedIHbeesInThisCohort 0
 repeat number_healthy ; only healthy bees can become newly infected
 [
 if random-float 1 > (1 - (1 / number)) ^ infectedMitesSwitchingHostsInThisCohort
 ; "number" (i.e. all bees in this cohort) as mites can also jump on already infected bees
 [
 set newlyInfectedIHbeesInThisCohort newlyInfectedIHbeesInThisCohort + 1
 ; # of newly infected bees is increased by 1

 set infectedMitesSwitchingHostsInThisCohort infectedMitesSwitchingHostsInThisCohort - 1
 if infectedMitesSwitchingHostsInThisCohort < 0
 [set infectedMitesSwitchingHostsInThisCohort 0]
]
]

 ; Assertion to be sure there are not more newly infected bees than there were healthy bees:
 if newlyInfectedIHbeesInThisCohort > number_healthy
 [
 set BugAlarm true
 print "Bug Alarm! newlyInfectedIHbeesInThisCohort > number_healthy!"

]

 set number_infectedAsAdult number_infectedAsAdult + newlyInfectedIHbeesInThisCohort
 set number_healthy number_healthy - newlyInfectedIHbeesInThisCohort

 if number_healthy < 0
 [
 set BugAlarm true
 type "BUG ALARM!!! (MitePhoreticPhaseProc) Negative number of healthy IH bees
(MitePhoreticPhaseProc): "
 show number_healthy
]

 if number_healthy + number_infectedAsPupa + number_infectedAsAdult != number
 [
 set BugAlarm true
 type "BUG ALARM!!! (MitePhoreticPhaseProc) Wrong sum of healthy + infected bees in this
cohort: "
 type number_healthy + number_infectedAsPupa + number_infectedAsAdult
 type " instead of: "
 show number
]
] ; end "if TotalIHbees > 0 and number > 0 "
] ; end "ask IHbeeCohorts "

 set infectedPhoreticMites infectedPhoreticMites + newlyInfectedMites
 set healthyPhoreticMites healthyPhoreticMites - newlyInfectedMites

 if healthyPhoreticMites < 0
 [
 set BugAlarm true
 type "BUG ALARM!!! Negative number of healthy mites (MitePhoreticPhaseProc): "
 show healthyPhoreticMites
]

 if infectedPhoreticMites + healthyPhoreticMites > 0
 [
 set PhoreticMitesHealthyRate

 healthyPhoreticMites / (infectedPhoreticMites + healthyPhoreticMites)
]

end

;
**
**

to MiteOrganisersUpdateProc
 set TotalMites 0
 ; all mites in the colony, irrespective if phoretic or in cells

 ask miteOrganisers
 [
 back 1 ; new position in the GUI
 set age age + 1
 set cohortInvadedMitesSum 0
 let counter 0
 ; counts total numbers of mites in brood cells for each miteOrganiser (="mite cohort")

 foreach workerCellListCondensed
 [
 set cohortInvadedMitesSum cohortInvadedMitesSum + (? * counter)
 set counter counter + 1
] ; sums up the mites in worker cells (multiplication of # cells with X mites in them * X) (X =
counter)

 set counter 0

 foreach droneCellListCondensed
 [
 set cohortInvadedMitesSum cohortInvadedMitesSum
 + (? * counter)
 set counter counter + 1
] ; sums up the mites in drone cells (multiplication of # cells with X mites in them * X) (X =
counter)

 set label cohortInvadedMitesSum
 set TotalMites TotalMites + cohortInvadedMitesSum
 ; interim result: summing up all the mites in the cells

 if (age > DRONE_EMERGING_AGE) and (age >= EMERGING_AGE)
 [
 die
] ; ">" (not ">=") as they age at the beginning of this procedure
] ; end "ask miteOrganisers "

 set TotalMites TotalMites + PhoreticMites
 ; final result: TotalMites = all mites in the cells + phoretic mites

end

;
**
**

; END OF THE VARROA MITE SUBMODEL ... END
OF THE VARROA MITE SUBMODEL

;
**
**

to CountingProc
 ; counts # bees in different stages, castes CALLED BY: 1. BroodCareProc 2. Go 3. MiteProcedure

 ; WORKERS:
 set TotalEggs 0 ask eggCohorts [set TotalEggs (TotalEggs + number)]
 set TotalLarvae 0 ask larvaeCohorts [set TotalLarvae (TotalLarvae + number)]
 set TotalPupae 0 ask pupaeCohorts [set TotalPupae (TotalPupae + number)]
 set TotalIHbees 0 ask IHbeeCohorts [set TotalIHbees (TotalIHbees + number)]
 set TotalForagers (count foragerSquadrons) * SQUADRON_SIZE

 ; DRONES:
 set TotalDroneEggs 0 ask DroneEggCohorts [set TotalDroneEggs (TotalDroneEggs + number)]
 set TotalDroneLarvae 0 ask DroneLarvaeCohorts [set TotalDroneLarvae (TotalDroneLarvae +
number)]
 set TotalDronePupae 0 ask DronePupaeCohorts [set TotalDronePupae (TotalDronePupae +
number)]
 set TotalDrones 0 ask DroneCohorts [set TotalDrones (TotalDrones + number)]
 set TotalWorkerAndDroneBrood TotalEggs + TotalLarvae + TotalPupae + TotalDroneEggs +
TotalDroneLarvae + TotalDronePupae
 if TotalEggs < 0 OR TotalLarvae < 0 OR TotalPupae < 0 OR TotalIHbees < 0 OR TotalForagers < 0
 [
 set BugAlarm true
 output-show (word ticks " BUG ALARM! negative number in total bees")
 type "TotalEggs: "
 type TotalEggs
 type " TotalLarvae: "
 type TotalLarvae
 type " TotalPupae: "
 type TotalPupae
 type " TotalIHbees: "
 type TotalIHbees
 type " TotalForagers: "
 print TotalForagers
]

 ask turtles
 [
 if number < 0
 [
 set BugAlarm true
 type (word ticks " BUG ALARM! negative number in turtles: ")
 show number
]
]

 if TotalMites < 0 or PhoreticMites < 0 or PhoreticMitesHealthyRate > 1 or
PhoreticMitesHealthyRate < 0
 [
 set BugAlarm true
 output-show (word ticks " BUG ALARM! Check number of mites and PhoreticMitesHealthyRate!")
 type "PhoreticMitesHealthyRate: "
 type PhoreticMitesHealthyRate
 type " TotalMites: "
 type TotalMites
 type " PhoreticMites: "
 type PhoreticMites
]

 ask (turtle-set pupaeCohorts dronePupaeCohorts droneCohorts)
 [
 if number != number_infectedAsPupa + number_healthy
 [
 set BugAlarm true
 show "BUG ALARM! (CountingProc) number <> healthy + infected"
]
]

 ask IHbeeCohorts
 [
 if number != number_infectedAsAdult + number_infectedAsPupa + number_healthy
 [
 set BugAlarm true
 show "BUG ALARM! (CountingProc) number <> healthy + infected (IH-bees)"
]
]
end

;
**
**

to PollenConsumptionProc
 ; calculates the daily pollen consumption

 let DAILY_POLLEN_NEED_ADULT 1.5 ; 0 ;1.5 ; 1.5 ;

 ; 1.5 mg fresh pollen per Day per bee (based on
 ; Pernal, Currie 2000, value for 14d old bees, Fig. 3)

 let DAILY_POLLEN_NEED_ADULT_DRONE 2 ; just an ESTIMATION

 let DAILY_POLLEN_NEED_LARVA 142 / (PUPATION_AGE - HATCHING_AGE)
 ; (23.6 mg/d) see HoPoMo
 let DAILY_POLLEN_NEED_DRONE_LARVA 50
 ; ESTIMATION, Rortais et al. 2005: "The pollen consumption of drone larvae has never been
determined."

 let pollenStoreLasting_d 7
 ; similar to "FACTORpollenstorage" of HoPoMo model, which is set to 6.
 ; Seeley 1995: pollen stores last for about 1 week;

 let needPollenAdult
 ((TotalIHbees + TotalForagers) * DAILY_POLLEN_NEED_ADULT
 + TotalDrones * DAILY_POLLEN_NEED_ADULT_DRONE)

 let needPollenLarvae (TotalLarvae * DAILY_POLLEN_NEED_LARVA
 + TotalDroneLarvae * DAILY_POLLEN_NEED_DRONE_LARVA)

 set DailyPollenConsumption_g (needPollenAdult + needPollenLarvae) / 1000 ; [g]
 set PollenStore_g PollenStore_g - DailyPollenConsumption_g
 if PollenStore_g < 0
 [
 set PollenStore_g 0
]

 ; the amount of pollen a colony tries to keep (depends on its current pollen consumption):
 set IdealPollenStore_g DailyPollenConsumption_g * pollenStoreLasting_d ; [g]

 if IdealPollenStore_g < MIN_IDEAL_POLLEN_STORE
 [
 set IdealPollenStore_g MIN_IDEAL_POLLEN_STORE
]

 ; PollenIdeal: switch in GUI, if true: pollen stores are always "ideal":
 if PollenIdeal = true
 [
 set PollenStore_g IdealPollenStore_g
]

 ; if no more pollen is left, protein stores of nurse bees are reduced.
 ;Assumption: protein stores of nurses can last for 7d, if the max. amount of brood (rel. to # nurses)
is present, or proportionally longer if less brood is present:
 let workloadNurses 0
 if (TotalIHbees + TotalForagers * FORAGER_NURSING_CONTRIBUTION) *
MAX_BROOD_NURSE_RATIO > 0
 [
 set workloadNurses

 TotalWorkerAndDroneBrood /
 ((TotalIHbees + TotalForagers * FORAGER_NURSING_CONTRIBUTION) *
MAX_BROOD_NURSE_RATIO)
]

 ifelse PollenStore_g > 0
 [
 set ProteinFactorNurses ProteinFactorNurses + (1 / PROTEIN_STORE_NURSES_d)
] ; IF pollen in present in colony, nurses can restore the protein stores of
 ; their bodies (within 7d)
 [
 set ProteinFactorNurses ProteinFactorNurses - (workloadNurses / PROTEIN_STORE_NURSES_d)
] ; ELSE protein content of brood food decreases, depending on brood to nurse ratio

 if ProteinFactorNurses > 1 [set ProteinFactorNurses 1]
 ; range of ProteinFactorNurses between 1..

 if ProteinFactorNurses < 0 [set ProteinFactorNurses 0] ; .. and 0
end

;
**
**

to HoneyConsumptionProc
 let DAILY_HONEY_NEED_ADULT_RESTING 11 ; 15 ; (11)
 ; [mg/Day of honey] Rortais et al 2005: Winter bees: 11 mg/d (based on
 ; assumptions from Winston, 1987)

 let DAILY_HONEY_NEED_NURSES 53.42 ; (53.42) [mg/Day of honey]
 ; Rortais et al 2005: average for "brood attending" 34-50mg sugar/d => 43-64mg/d honey

 let THERMOREGULATION_BROOD (DAILY_HONEY_NEED_NURSES -
DAILY_HONEY_NEED_ADULT_RESTING)
 / MAX_BROOD_NURSE_RATIO
 ; additional cost per broodcell (e.g. Thermoregulation): difference between nursing
 ; and resting divided by # broodcells;

 let DAILY_HONEY_NEED_LARVA 65.4 / (PUPATION_AGE - HATCHING_AGE) ; [mg/day]
 ; = 10.9[mg] HONEY per Day per larvae = 163.5mg nectar in total * 0.4
 ; (0.4: Nectar to honey); HoPoMo = 65.4 mg / 6

 let DAILY_HONEY_NEED_DRONE_LARVA 19.2 ;
 ; [mg/Day of honey] Rortais et al 2005: 98.2mg sugar in 6.5d
 ; sugar to honey: x1.272 i.e. 124.9mg honey in total or 19.2 mg/d

 let DAILY_HONEY_NEED_ADULT_DRONE 10 ;
 ; (9.806 = 10mg honey per day): Winston p62: resting drone 1-3mg sugar/hr
 ; flying drone: 14mg/hr (Mindt 1962); assumptions: 22h resting, 2h flying (MB);
 ; 1 mg sucrose = 17J; 1kJ = 0.008013g Honig

 ; honey costs of all adults, in-hive bees, foragers and drones:
 let needHoneyAdult
 (TotalIHbees + TotalForagers) * DAILY_HONEY_NEED_ADULT_RESTING
 + TotalDrones * DAILY_HONEY_NEED_ADULT_DRONE

 let needHoneyLarvae
 TotalLarvae * DAILY_HONEY_NEED_LARVA
 + TotalDroneLarvae * DAILY_HONEY_NEED_DRONE_LARVA

 set DailyHoneyConsumption
 needHoneyAdult + needHoneyLarvae + TotalWorkerAndDroneBrood
 * THERMOREGULATION_BROOD ; [mg]

 ; the honey consumption is removed from the honey stores:
 set HoneyEnergyStore
 HoneyEnergyStore
 - (DailyHoneyConsumption / 1000) * ENERGY_HONEY_per_g

 ; sum up the total honey consumption as potential output:
 set CumulativeHoneyConsumption
 CumulativeHoneyConsumption + DailyHoneyConsumption ;[mg]

 ; HoneyIdeal: switch in GUI, if true: honey stores are always full:
 if HoneyIdeal = true
 [
 set HoneyEnergyStore MAX_HONEY_ENERGY_STORE
]
end

;
**
**

to BeekeepingProc
 let winterPauseStart 320 ; 320 = mid November
 let winterPauseStop 45 ; 45 = mid February
 let minWinterStore_kg 16 ; [kg] honey
 let minSummerStore_kg 3 ; [kg]
 let addedFondant_kg 1 ; [kg]
 ;let addedPollen_kg 0.5 ; [kg]

 ; FEEDING OF COLONY:
 ask Signs with [shape = "ambrosia"] [hide-turtle]

 if FeedBees = true
 and day < winterPauseStart
 and day > winterPauseStop
 and HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000) < minSummerStore_kg
 ; feeding colony in spring or summer

 [
 set TotalHoneyFed_kg TotalHoneyFed_kg + addedFondant_kg
 set HoneyEnergyStore HoneyEnergyStore + (addedFondant_kg * ENERGY_HONEY_per_g * 1000)
 output-type "Feeding colony on day "
 output-type ceiling (day mod 30.4374999) ; day
 output-type "."
 output-type floor(day / (365.25 / 12)) + 1 ; month
 output-type "."
 output-type ceiling (ticks / 365) ; year
 output-type " Fondant provided [kg]: "
 output-type precision addedFondant_kg 1
 output-type " total food added [kg]: "
 output-print precision TotalHoneyFed_kg 1
 ask Signs with [shape = "ambrosia"] [show-turtle]
]

 if FeedBees = true
 and day = winterPauseStart
 and HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000) < minWinterStore_kg
 ; feeding colony before winter
 [
 set TotalHoneyFed_kg TotalHoneyFed_kg
 + minWinterStore_kg
 -(HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000))

 output-type "Feeding colony on day "
 output-type day
 output-type ". Ambrosia fed [kg]: "
 output-type precision (minWinterStore_kg - (HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000
))) 1
 output-type " total food added [kg]: "
 output-print precision TotalHoneyFed_kg 1
 set HoneyEnergyStore minWinterStore_kg * 1000 * ENERGY_HONEY_per_g
 ; if honey store is smaller than minWinterStore it is filled up to minWinterStore

 ask Signs with [shape = "ambrosia"] [show-turtle]
]

 ; ADD BEES TO WEAK COLONY - a weak colony is "merged" with another
 ; (not modelled!) weak colony (all of them are healthy):
 ask signs with [shape = "colonies_merged"] [hide-turtle]
 if MergeWeakColonies = true
 and (TotalIHbees + TotalForagers) < MergeColoniesTH
 and day = winterPauseStart
 [
 set TotalBeesAdded TotalBeesAdded + MergeColoniesTH
 output-type "Merging colonies in autumn! "
 output-type " # added bees: "
 output-type MergeColoniesTH
 output-type " total bees added: "
 output-print TotalBeesAdded

 ask signs with [shape = "colonies_merged"] [show-turtle]

 create-foragerSquadrons (MergeColoniesTH / SQUADRON_SIZE)
 [
 set age 60 + random 40
 setxy 30 9
 set color grey
 set size 2
 set heading 90
 set shape "bee_mb_1"
 set mileometer random (MAX_TOTAL_KM / 5)
 set activity "resting"
 set activityList []
 set cropEnergyLoad 0 ; [kJ] no nectar in the crop yet
 set collectedPollen 0 ; [g] no pollen pellets
 set knownNectarPatch -1 ; -1 = no nectar Flower patch known
 set knownPollenPatch -1 ; -1 = no pollen Flower patch known
 set pollenForager false ; new foragers are nectar foragers
 set infectionState "healthy"
 ; possible infection states are: "healthy" "infectedAsPupa" "infectedAsAdult"
]
] ; if MergeWeakColonies = true ...

 ; ADDING POLLEN IN SPRING:
 ask signs with [shape = "pollengrain"] [hide-turtle]
 if AddPollen = true and day = 90 ; day 90: end of March
 [
 ask signs with [shape = "pollengrain"] [show-turtle]
 set TotalPollenAdded TotalPollenAdded + addedPollen_kg
 output-type "Added pollen [kg]: "
 output-type addedPollen_kg
 output-type " total pollen added [kg]: "
 output-print TotalPollenAdded
 set PollenStore_g PollenStore_g + addedPollen_kg * 1000
]

 ask Signs with [shape = "honeyjar"] [hide-turtle]
 if ((Day >= HarvestingDay)
 and (Day < HarvestingDay + HarvestingPeriod)
 and (HoneyHarvesting = true))
 ; honey can only be harvested within HarvestingPeriod
 [
 if HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000) > HarvestingTH
 [
 set HarvestedHoney_kg (HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000)) -
RemainingHoney_kg
 set HoneyEnergyStore HoneyEnergyStore - (HarvestedHoney_kg * ENERGY_HONEY_per_g *
1000)
 set TotalHoneyHarvested_kg TotalHoneyHarvested_kg + HarvestedHoney_kg
 output-type "Honey harvest on day "
 output-type ceiling (day mod 30.4374999)

 output-type "."
 output-type floor(day / (365.25 / 12)) + 1
 output-type "."
 output-type ceiling (ticks / 365)
 output-type ". Amount [kg]: "
 output-type precision HarvestedHoney_kg 1
 output-type " total honey harvested: "
 output-print precision TotalHoneyHarvested_kg 1
 ask Signs with [shape = "honeyjar"]
 [
 show-turtle
 set label precision HarvestedHoney_kg 1
]
]
]

 if QueenAgeing = true
 [
 let requeening true ; true
 if requeening = true and Queenage >= 375
 [
 set Queenage 10
 output-print word "New queen inserted on day " day
] ; old queen is replaced by the beekeeper
]

 ; begin ***NEW FOR BEEHAVE_BEEMAPP2015***
 ; let treatmentDay 270 ; 270: 27.September
 ; let treatmentDuration 40 ; (28-40d) Fries et al. 1994
 ; let treatmentEfficiency 0.115
 ; (0.115) Fries et al. 1994 kills X*100% of phoretic mites each treatment Day

 ; treatment #1:
 if EfficiencyPhoretic > 1 [set EfficiencyPhoretic 1]
 ifelse ((varroaTreatment = true) and (Day >= treatmentDay)
 and (Day <= treatmentDay + treatmentDuration)))
 and (N_INITIAL_MITES_HEALTHY + N_INITIAL_MITES_INFECTED > 0))
 [
 set PhoreticMites round(PhoreticMites * (1 - treatmentEfficiencyEfficiencyPhoretic))
 ask signs with [shape = "x" or shape = "varroamite03"] [show-turtle]

 if KillOpenBrood = true
 [
 ask (turtle-set eggCohorts larvaeCohorts) with [age < PUPATION_AGE] [set number 0]
 ask (turtle-set droneEggCohorts droneLarvaeCohorts) with [age < DRONE_PUPATION_AGE] [
set number 0]
 ask miteOrganisers with [age <= 10] ; i.e. those mite organisers, connected to dying larvae
cohorts
 [

 if age < 10 ; for workers: age 10 brood is already capped, i.e. not affected!
 [set workerCellListCondensed n-values (MAX_INVADED_MITES_WORKERCELL + 1) [0]]
 set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [0]
 let memoInvadedW invadedWorkerCohortID
 let memoInvadedD invadedDroneCohortID
 if any? turtles with [who = memoInvadedW] [set workerCellListCondensed replace-item 0
workerCellListCondensed [number] of turtle invadedWorkerCohortID]
 if any? turtles with [who = memoInvadedD] [set droneCellListCondensed replace-item 0
droneCellListCondensed [number] of turtle invadedDroneCohortID]
]
]

 if KillAllMitesInCells = true
 [
 ask miteOrganisers
 [
 set workerCellListCondensed n-values (MAX_INVADED_MITES_WORKERCELL + 1) [0]
 set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [0]
 let memoInvadedW invadedWorkerCohortID
 let memoInvadedD invadedDroneCohortID
 if any? turtles with [who = memoInvadedW] [set workerCellListCondensed replace-item 0
workerCellListCondensed [number] of turtle invadedWorkerCohortID]
 if any? turtles with [who = memoInvadedD] [set droneCellListCondensed replace-item 0
droneCellListCondensed [number] of turtle invadedDroneCohortID]
]
]
]
 [
 ask signs with [shape = "x" or shape = "varroamite03"] [hide-turtle]
]

 ; treatment #2:
 if EfficiencyPhoretic2 > 1 [set EfficiencyPhoretic2 1]
 if ((varroaTreatment = true) and (Day >= treatmentDay2)
 and (Day <= treatmentDay2 + treatmentDuration2))
 [
 set PhoreticMites round (PhoreticMites * (1 - EfficiencyPhoretic2))
 ask signs with [shape = "x" or shape = "varroamite03"] [show-turtle]
 if KillOpenBrood2 = true
 [
 ask (turtle-set eggCohorts larvaeCohorts) with [age < PUPATION_AGE] [set number 0]
 ask (turtle-set droneEggCohorts droneLarvaeCohorts) with [age < DRONE_PUPATION_AGE] [
set number 0]
 ask miteOrganisers with [age <= 10] ; i.e. those mite organisers, connected to dying larvae
cohorts
 [
 if age < 10 ; for workers: age 10 brood is already capped, i.e. not affected!
 [set workerCellListCondensed n-values (MAX_INVADED_MITES_WORKERCELL + 1) [0]]
 set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [0]
 let memoInvadedW invadedWorkerCohortID
 let memoInvadedD invadedDroneCohortID

 if any? turtles with [who = memoInvadedW] [set workerCellListCondensed replace-item 0
workerCellListCondensed [number] of turtle invadedWorkerCohortID]
 if any? turtles with [who = memoInvadedD] [set droneCellListCondensed replace-item 0
droneCellListCondensed [number] of turtle invadedDroneCohortID]
]
]

 if KillAllMitesInCells2 = true
 [
 ask miteOrganisers
 [
 set workerCellListCondensed n-values (MAX_INVADED_MITES_WORKERCELL + 1) [0]
 set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [0]
 let memoInvadedW invadedWorkerCohortID
 let memoInvadedD invadedDroneCohortID
 if any? turtles with [who = memoInvadedW] [set workerCellListCondensed replace-item 0
workerCellListCondensed [number] of turtle invadedWorkerCohortID]
 if any? turtles with [who = memoInvadedD] [set droneCellListCondensed replace-item 0
droneCellListCondensed [number] of turtle invadedDroneCohortID]
]
]

]

 ; removal drone brood:
 if (ContinuousBroodRemoval = true) or (DroneBroodRemoval = true and (day = RemovalDay1 or day
= RemovalDay2 or day = RemovalDay3 or day = RemovalDay4 or day = RemovalDay5))
 [
 ask dronePupaeCohorts
 [
 set number 0
 set number_healthy 0
 set number_infectedAsPupa 0
]
 ask miteOrganisers with [age >= DRONE_PUPATION_AGE + 1]
 [
 set droneCellListCondensed n-values (MAX_INVADED_MITES_DRONECELL + 1) [0]
]
 CountingProc
]

 ; re-infestation of varroa-mites
 if AllowReinfestation = true
 [
 let additionalMites random-poisson MiteReinfestation
 if DailyForagingPeriod = 0 [set additionalMites 0]
 if phoreticMites + additionalMites > 0
 [set PhoreticMitesHealthyRate (phoreticMites * phoreticMitesHealthyRate + additionalMites /
2) / (phoreticMites + additionalMites)] ; assumes 50% of new mites are infected with virus
 set PhoreticMites PhoreticMites + additionalMites
 set TotalMites TotalMites + additionalMites

]

 ask miteOrganisers ; update the number of invaded mites for each mite organiser:
 [
 let counter 0
 set cohortInvadedMitesSum 0
 foreach workerCellListCondensed
 [
 set cohortInvadedMitesSum cohortInvadedMitesSum + (? * counter)
 set counter counter + 1
]
 set counter 0
 foreach droneCellListCondensed
 [
 set cohortInvadedMitesSum cohortInvadedMitesSum + (? * counter)
 set counter counter + 1
]
 set label cohortInvadedMitesSum
]

 ; end ***NEW FOR BEEHAVE_BEEMAPP2015***

end

;
**
**

;...
............
; PLOT PROCEDURES
;...
............

;
**
**

to DoPlotsProc
; CAUTION: choosing "age forager squadrons", "mileometer" or "mean total km per day" will affect
; the sequence of random numbers!
; with-local-randomness [; to run the procedure is run without affecting subsequent random events
 if showAllPlots = true [DrawForagingMapProc]

 ask Signs with [shape = "arrow"]
 [
 facexy (xcor + 1000000) (ycor + (HoneyEnergyStore - HoneyEnergyStoreYesterday)
 / (ENERGY_HONEY_per_g / 1000))

 set label word "H: " precision ((HoneyEnergyStore - HoneyEnergyStoreYesterday)
 / (ENERGY_HONEY_per_g * 1000)) 2

 ifelse (HoneyEnergyStore - HoneyEnergyStoreYesterday)
 / (ENERGY_HONEY_per_g * 1000) >= 0
 [set color green]
 [set color red]
]

 ask Signs with [shape = "arrowpollen"]
 [
 facexy (xcor - 100) (ycor + (PollenStore_g - PollenStore_g_Yesterday))
 set label word "P: " precision ((PollenStore_g - PollenStore_g_Yesterday) / 1000) 2
 ifelse (PollenStore_g - PollenStore_g_Yesterday) > 0
 [set color green]
 [set color red]
]

 ask Signs with [shape = "pete"]
 [
 ifelse VarroaTreatment = true
 or FeedBees = true
 or HoneyHarvesting = true
 or AddPollen
 or MergeWeakColonies = TRUE
 [show-turtle]
 [hide-turtle]
]

 ; calling GenericPlottingProc (8x) with plotname & plotChoice as input:
 GenericPlottingProc "Generic plot 1" GenericPlot1
 GenericPlottingProc "Generic plot 2" GenericPlot2
 GenericPlottingProc "Generic plot 3" GenericPlot3
 GenericPlottingProc "Generic plot 4" GenericPlot4
 GenericPlottingProc "Generic plot 5" GenericPlot5
 GenericPlottingProc "Generic plot 6" GenericPlot6
 GenericPlottingProc "Generic plot 7" GenericPlot7
 GenericPlottingProc "Generic plot 8" GenericPlot8
;] ; end "with-local-randomness"
end
;
**
**

to GenericPlotClearProc

 ; clear those plots, that only show output of 'today'

 let i 1
 while [i <= N_GENERIC_PLOTS]

 [
 let plotname (word "Generic plot " i)
 ; e.g. "Generic plot 1"
 if (i = 1 and (GenericPlot1 = "foragers today [%]" or GenericPlot1 = "active foragers today [%]"))
 or (i = 2 and (GenericPlot2 = "foragers today [%]" or GenericPlot2 = "active foragers today [%]"))
 or (i = 3 and (GenericPlot3 = "foragers today [%]" or GenericPlot3 = "active foragers today [%]"))
 or (i = 4 and (GenericPlot4 = "foragers today [%]" or GenericPlot4 = "active foragers today [%]"))
 or (i = 5 and (GenericPlot5 = "foragers today [%]" or GenericPlot5 = "active foragers today [%]"))
 or (i = 6 and (GenericPlot6 = "foragers today [%]" or GenericPlot6 = "active foragers today [%]"))
 or (i = 7 and (GenericPlot7 = "foragers today [%]" or GenericPlot7 = "active foragers today [%]"))
 or (i = 8 and (GenericPlot8 = "foragers today [%]" or GenericPlot8 = "active foragers today [%]"))
 [
 set-current-plot plotname
 clear-plot
]
 set i i + 1
]
end
;
**
**

to GenericPlottingProc [plotname plotChoice]
 set TotalEventsToday NectarFlightsToday + PollenFlightsToday + EmptyFlightsToday
 set-current-plot plotname

 set TotalWeightBees_kg
 (TotalEggs * 0.0001 ; 0.0001g (wegg, HoPoMo)
 + TotalLarvae * 0.0457
 ; 0.0457g : average weight of a larva (using wlarva 1..5 from HoPoMo (p. 231)
 + TotalPupae * 0.16 ; 0.16g wpupa (HoPoMo)
 + (TotalIHbees + TotalForagers) * WEIGHT_WORKER_g ; 0.1g wadult (HoPoMo)
 + TotalDroneEggs * 0.0001
 + TotalDrones * 0.22
 ; 0.22g (Rinderer, Collins, Pesante (1985), Apidologie)
 + TotalDroneLarvae *(0.1 * (0.22 / WEIGHT_WORKER_g))
 ; estimation of drone larva weight on basis of worker larva weight and
 ; adult worker:drone weight
 ; 0.10054 = 0.0457*2.2 = estimated drone larva weight
 + TotalDronePupae * (0.16 * (0.22 / WEIGHT_WORKER_g))
 ; estimation of drone pupa weight on basis of worker pupa weight and adult worker:drone
weight
) / 1000 ; [g] -> [kg]

 if plotChoice = "colony weight [kg]" ; total weight of the colony without hive/supers etc.
 [
 create-temporary-plot-pen "weight"
 plot TotalWeightBees_kg ;
]

 if plotChoice = "foragingPeriod"
 [
 create-temporary-plot-pen "period"
 plotxy ticks DailyForagingPeriod / 3600
]
 if plotChoice = "# completed foraging trips (E-3)"
 [
 create-temporary-plot-pen "# trips"
 plotxy ticks totalEventsToday / 1000
]

 if plotChoice = "trips per hour sunshine (E-3)"
 [
 create-temporary-plot-pen "trips/h"
 ifelse DailyForagingPeriod > 0
 [plotxy ticks (TotalEventsToday / 1000) / (DailyForagingPeriod / 3600)]
 [plotxy ticks 0]
]

 if plotChoice = "active foragers [%]"
 [
 create-temporary-plot-pen "active%"
 set-plot-y-range 0 100
 set-plot-pen-mode 1 ; 1: bars
 ifelse TotalForagers > 0
 [plotxy ticks (100 * SQUADRON_SIZE
 * (count foragersquadrons with [km_today > 0])) / TotalForagers]
 [plotxy ticks 0]
]

 if plotChoice = "mean trip duration"
 [
 create-temporary-plot-pen "trip [min]"
 set-plot-pen-mode 1 ; 1: bars
 ifelse ForagingRounds > 0
 [plotxy ticks (DailyForagingPeriod / (ForagingRounds * 60))]
 ; mean Foraging trip duration [min] on this day
 [plotxy ticks 0] ; if no foraging takes place
]

 if plotChoice = "mean total km per day"
 [
 create-temporary-plot-pen "km/d"
 set-plot-pen-mode 0 ; 0: lines

 ifelse count foragerSquadrons > 0
 [plotxy ticks mean [km_today] of foragerSquadrons]
 [plotxy ticks 0]
]

 if plotChoice = "mileometer"
 [
 create-temporary-plot-pen "km"
 set-plot-x-range 0 850
 set-plot-y-range 0 40
 set-plot-pen-mode 1 ; 1: bars
 set-plot-pen-interval 25
 histogram [mileometer] of foragerSquadrons
]

 if plotChoice = "loads returning foragers [%]"
 [
 set totalEventsToday NectarFlightsToday + PollenFlightsToday + EmptyFlightsToday
 ifelse totalEventsToday > 0
 [
 create-temporary-plot-pen "nectar"
 set-plot-pen-color yellow
 plotxy ticks (100 * NectarFlightsToday) / totalEventsToday
 create-temporary-plot-pen "pollen"
 set-plot-pen-color orange
 plotxy ticks (100 * PollenFlightsToday) / totalEventsToday
 create-temporary-plot-pen "empty"
 set-plot-pen-color cyan
 plotxy ticks (100 * EmptyFlightsToday) / totalEventsToday
]
 [
 create-temporary-plot-pen "nectar"
 set-plot-pen-color yellow
 plotxy ticks 0
 create-temporary-plot-pen "pollen"
 set-plot-pen-color orange
 plotxy ticks 0
 create-temporary-plot-pen "empty"
 set-plot-pen-color cyan
 plotxy ticks 0
]
]

 if plotChoice = "broodcare [%]"
 [
 set-plot-y-range 0 150
 create-temporary-plot-pen "Protein"
 set-plot-pen-color orange
 plot (ProteinFactorNurses * 100) ; Proteinfactor of nurses [%]
 create-temporary-plot-pen "Workload"

 if ((TotalIHbees + TotalForagers * FORAGER_NURSING_CONTRIBUTION)
 * MAX_BROOD_NURSE_RATIO) > 0 ; avoids division by 0
 [
 plot (100 * (TotalWorkerAndDroneBrood / ((TotalIHbees + TotalForagers
 * FORAGER_NURSING_CONTRIBUTION) * MAX_BROOD_NURSE_RATIO)))
]

 create-temporary-plot-pen "Pollen"
 set-plot-pen-color green
 plot (PollenStore_g / IdealPollenStore_g) * 100
]

 if plotChoice = "consumption [g/day]"
 [
 create-temporary-plot-pen "honey"
 set-plot-pen-color yellow
 plot (DailyHoneyConsumption / 1000) ;[g/day]

 create-temporary-plot-pen "pollen"
 set-plot-pen-color orange
 plot (DailyPollenConsumption_g) ;[g/day]
]

 if plotChoice = "drones"
 [
 create-temporary-plot-pen "Eggs" ; DRONE eggs
 set-plot-pen-color blue
 plot (TotalDroneEggs)
 create-temporary-plot-pen "Larvae" ; DRONE larvae
 set-plot-pen-color yellow
 plot (TotalDroneLarvae)
 create-temporary-plot-pen "Pupae" ; DRONE pupae
 set-plot-pen-color brown
 plot (TotalDronePupae)
 create-temporary-plot-pen "Drones"
 plot (TotalDrones)
]

 if plotChoice = "colony structure workers"
 [
 create-temporary-plot-pen "Eggs"
 set-plot-pen-color blue
 plot (TotalEggs)
 create-temporary-plot-pen "Larvae"
 set-plot-pen-color yellow
 plot (TotalLarvae)
 create-temporary-plot-pen "Pupae"

 set-plot-pen-color brown
 plot (TotalPupae)
 create-temporary-plot-pen "IHbees"
 set-plot-pen-color orange
 plot (TotalIHbees)
 create-temporary-plot-pen "Foragers"
 set-plot-pen-color green
 plot (TotalForagers)
 create-temporary-plot-pen "Adults"
 set-plot-pen-color black
 plot (TotalForagers + TotalIHbees)
 create-temporary-plot-pen "Brood"
 set-plot-pen-color violet
 plot (TotalEggs + TotalLarvae + TotalPupae)
]

 let totalNectarAvailableToDay 0
 let totalPollenAvailableToDay 0
 ask flowerPatches
 [
 set totalNectarAvailableToDay totalNectarAvailableToDay + quantityMyl
 set totalPollenAvailableToDay totalPollenAvailableToDay + amountPollen_g
]

 if plotChoice = "nectar availability [l]"
 [
 ifelse readInfile = false
 [
 create-temporary-plot-pen "Patch 0"
 set-plot-pen-color red
 plot (([quantityMyl] of flowerPatch 0) / 1000000) ;[l] nectar
 create-temporary-plot-pen "Patch 1"
 set-plot-pen-color green
 plot (([quantityMyl] of flowerPatch 1) / 1000000) ;[l] nectar
]
 [
 create-temporary-plot-pen "all patches"
 set-plot-pen-color yellow ; black
 plot (totalNectarAvailableToDay / 1000000) ;[l] nectar
]
]

 if plotChoice = "pollen availability [kg]"
 [
 ifelse readInfile = false
 [
 create-temporary-plot-pen "Patch 0"

 set-plot-pen-color red
 plot (([amountPollen_g] of flowerPatch 0) / 1000) ; [kg] pollen
 create-temporary-plot-pen "Patch 1"
 set-plot-pen-color green
 plot (([amountPollen_g] of flowerPatch 1) / 1000) ; [kg] pollen
]
 [
 create-temporary-plot-pen "all patches"
 set-plot-pen-color orange; black
 plot (totalPollenAvailableToDay / 1000) ; [kg] pollen
]
]

 if plotChoice = "egg laying"
 [
 create-temporary-plot-pen "new eggs"
 plot (NewWorkerEggs)
]

 if plotChoice = "honey gain [kg]"
 [
 set-plot-y-range -3 10
 create-temporary-plot-pen "gain"
 set-plot-pen-mode 1 ; 1: bars
 ifelse (HoneyEnergyStore - HoneyEnergyStoreYesterday) / (ENERGY_HONEY_per_g * 1000) < 0
 [set-plot-pen-color red]
 [set-plot-pen-color black]
 plotxy ticks (HoneyEnergyStore - HoneyEnergyStoreYesterday) / (ENERGY_HONEY_per_g * 1000
)
]

 if plotChoice = "honey & pollen stores & hive [kg]"
 [create-temporary-plot-pen "honey"
 set-plot-pen-color yellow
 plot (HoneyEnergyStore / (ENERGY_HONEY_per_g * 1000)) ;[ml] honey
 ; create-temporary-plot-pen "decent honey"
 ; set-plot-pen-color brown
 ; plot (TotalIHbees + TotalForagers) * 0.0015
 ;; 1.5g honey per bee = estimated honey necessary for the colony to survive the winter
 create-temporary-plot-pen "pollen x 20"
 set-plot-pen-color orange
 plot 20 * (PollenStore_g / 1000) ;[kg * 10] pollen stored in the colony in kg
]

 if plotChoice = "mites"
 [
 create-temporary-plot-pen "totalMites"
 plot (TotalMites) ; # all mites (phoretic & in cells)
 create-temporary-plot-pen "phoreticMites"
 set-plot-pen-color brown
 plot (PhoreticMites) ; # phoretic mites

 create-temporary-plot-pen "phoreticMitesInfected"
 set-plot-pen-color red
 plot (PhoreticMites * (1 - PhoreticMitesHealthyRate)) ; # infected phoretic mites
 create-temporary-plot-pen "phoreticMitesHealthy"
 set-plot-pen-color green
 plot (PhoreticMites * PhoreticMitesHealthyRate) ; # healthy phoretic mites
 create-temporary-plot-pen "miteDrop x 10"
 set-plot-pen-color violet
 plot (DailyMiteFall * 10) ; # dropping mites
]

 if plotChoice = "proportion infected mites"
 [
 create-temporary-plot-pen "proportion"
 ;if TotalMites > 0 [plotxy ticks (1 - PhoreticMitesHealthyRate)] ; ***NEW FOR
BEEHAVE_BEEMAPP2015***
 plotxy ticks (1 - PhoreticMitesHealthyRate) ; ***NEW FOR BEEHAVE_BEEMAPP2015***
]

 if plotChoice = "aff & lifespan"
 [
 create-temporary-plot-pen "aff"
 set-plot-y-range 0 200
 set-plot-pen-mode 1 ; 1: bars
 if count foragerSquadrons with [age = aff] > 0
 [plotxy ticks (aff)]
 create-temporary-plot-pen "lifespan"
 set-plot-pen-color green
 set-plot-pen-mode 2 ; 2: dots
 ifelse (DeathsAdultWorkers_t > 0)
 and ((SumLifeSpanAdultWorkers_t / deathsAdultWorkers_t) < MIN_AFF)
 [plot-pen-down]
 [plot-pen-up]
 plot (SumLifeSpanAdultWorkers_t / (DeathsAdultWorkers_t + 0.0000001)) ; to avoid division by 0
]

 if plotChoice = "age forager squadrons"
 [
 set-plot-y-range 0 10
 set-plot-x-range 0 300

 create-temporary-plot-pen "foragersHealthy"
 set-plot-pen-mode 1 ; 1: bars
 set-plot-pen-interval 1
 histogram [age] of foragerSquadrons
 with [infectionState = "healthy"]

 create-temporary-plot-pen "foragersDiseased"
 set-plot-pen-mode 1 ; 1: bars
 set-plot-pen-interval 1
 set-plot-pen-color red

 histogram [age] of foragerSquadrons
 with [infectionState = "infectedAsPupa"]
 ; infectedAsPupa = true or infectedAsAdult = true]

 create-temporary-plot-pen "foragersCarrier"
 set-plot-pen-mode 1 ; 1: bars
 set-plot-pen-interval 1
 set-plot-pen-color blue
 histogram [age] of foragerSquadrons
 with [infectionState = "infectedAsAdult"]
]

end

;
**
**

to DrawForagingMapProc
; CAUTION: choice of ForagingMap and DotDensity affects the sequence of random numbers!
; with-local-randomness [; procedure is run without affecting subsequent random events
 set-current-plot "foraging map"
 set-current-plot-pen "default"
 clear-plot
 let xplot 0
 let yplot 0
 ask flowerPatches
 [
 if ForagingMap = "Nectar foraging"
 [
 repeat nectarVisitsToday * DotDensity
 [
 let radius sqrt(size_sqm / pi)
 ; the (hypothetical) radius of the patch (assumed to be circular)

 set xplot (xcorMap - radius) + (random-float (2 * radius))
 ; x coordinate randomly chosen from centre +- radius

 let yRange sqrt((radius ^ 2) - ((xplot - xcorMap) ^ 2))
 ; calculate the range of possible y-coordinates for chosen x-coordinate,

 set yplot (ycorMap - yRange) + (random-float (2 * yRange))
 ; y coordinate randomly chosen from the range of possible values

 set-plot-pen-color yellow
 plotxy xplot yplot
]
]

 if ForagingMap = "Pollen foraging"
 [
 repeat pollenVisitsToday * DotDensity
 [
 let radius sqrt(size_sqm / pi)
 ; the (hypothetical) radius of the patch (assumed to be circular)

 set xplot (xcorMap - radius) + (random-float (2 * radius))
 ; x coordinate randomly chosen from centre +- radius

 let yRange sqrt((radius ^ 2) - ((xplot - xcorMap) ^ 2))
 ; calculate the range of possible y-coordinates for chosen x-coordinate,

 set yplot (ycorMap - yRange) + (random-float (2 * yRange))
 ; y coordinate randomly chosen from the range of possible values)

 set-plot-pen-color orange
 plotxy xplot yplot
]
]

 if ForagingMap = "All visits"
 [
 repeat (nectarVisitsToday + pollenVisitsToday) * DotDensity
 [
 let radius sqrt(size_sqm / pi)
 ; the (hypothetical) radius of the patch (assumed to be circular)

 set xplot (xcorMap - radius) + (random-float (2 * radius))
 ; x coordinate randomly chosen from centre +- radius

 let yRange sqrt((radius ^ 2) - ((xplot - xcorMap) ^ 2))
 ; calculate the range of possible y-coordinates for chosen x-coordinate,

 set yplot (ycorMap - yRange) + (random-float (2 * yRange))
 ; y coordinate randomly chosen from the range of possible values

 set-plot-pen-color black
 plotxy xplot yplot
]
]

 if ForagingMap = "All patches"
 [
 repeat 10000 * DotDensity
 [
 let radius sqrt(size_sqm / pi)
 ; the (hypothetical) radius of the patch (assumed to be circular)

 set xplot (xcorMap - radius) + (random-float (2 * radius))
 ; x coordinate randomly chosen from centre +- radius

 let yRange sqrt((radius ^ 2) - ((xplot - xcorMap) ^ 2))
 ; calculate the range of possible y-coordinates for chosen x-coordinate,

 set yplot (ycorMap - yRange) + (random-float (2 * yRange))
 ; y coordinate randomly chosen from the range of possible values

 if patchType = "YellowField"
 or patchType = "OilSeedRape"
 [
 set-plot-pen-color yellow
]
 if patchType = "RedField" [set-plot-pen-color red]
 if patchType = "BlueField" [set-plot-pen-color blue]
 if patchType = "GreenField" [set-plot-pen-color green]
 plotxy xplot yplot
]
]

 if ForagingMap = "Available patches"
 [
 let proportionPollen 0
 let pollenAvailable amountPollen_g / POLLENLOAD
 ; # pollen loads available

 let nectarAvailable quantityMyl / CROPVOLUME
 ; # crop loads available

 if pollenAvailable + nectarAvailable > 0
 [
 set proportionPollen pollenAvailable / (pollenAvailable + nectarAvailable)
]

 repeat round sqrt((pollenAvailable + nectarAvailable) * DotDensity)
 ; sqrt to avoid too many repeats
 [
 let radius sqrt(size_sqm / pi)
 ; the (hypothetical) radius of the patch (assumed to be circular)

 set xplot (xcorMap - radius) + (random-float (2 * radius))
 ; x coordinate randomly chosen from centre +- radius

 let yRange sqrt((radius ^ 2) - ((xplot - xcorMap) ^ 2))
 ; calculate the range of possible y-coordinates for chosen x-coordinate,

 set yplot (ycorMap - yRange) + (random-float (2 * yRange))
 ; y coordinate randomly chosen from the range of possible values

 ifelse random-float 1 < proportionPollen
 [set-plot-pen-color orange]
 [set-plot-pen-color yellow]

 plotxy xplot yplot
]
]

 if ForagingMap = "Nectar and Pollen"
 [
 let proportionPollen 0
 if pollenVisitsToday + nectarVisitsToday > 0
 [
 set proportionPollen pollenVisitsToday
 / (pollenVisitsToday
 + nectarVisitsToday)
]

 repeat (pollenVisitsToday + nectarVisitsToday) * DotDensity
 [
 let radius sqrt(size_sqm / pi)
 ; the (hypothetical) radius of the patch (assumed to be circular)

 set xplot (xcorMap - radius) + (random-float (2 * radius))
 ; x coordinate randomly chosen from centre +- radius

 let yRange sqrt((radius ^ 2) - ((xplot - xcorMap) ^ 2))
 set yplot (ycorMap - yRange) + (random-float (2 * yRange))
 ifelse random-float 1 < proportionPollen
 [set-plot-pen-color orange]
 [set-plot-pen-color yellow]
 plotxy xplot yplot
]
]
] ; end of: "Ask flowerpatches"

 set-plot-pen-color brown ; draw the colony:
 repeat 10000
 [
 plotxy (-50 + random 100) (-50 + random 100)
]
;] ; end "local randomness"
end

;
**
**

to WriteToFileProc
 ; writes data in file, copied from: Netlogo: Library:
 ; Code Examples: "File Output Example"

 let year ceiling (ticks / 365)
 foreach sort flowerPatches

 [
 ask ?
 [
 file-print
 (word year " " word ticks " " ForagingRounds " " word self
 " distance: " distanceToColony
 " concentration: " nectarConcFlowerPatch
 " EEF: " EEF
 " quantity: " quantityMyl)
]
]

 foreach sort foragerSquadrons
 [
 ask ?
 [
 file-print
 (word year " " word ticks " " ForagingRounds " " word self
 " age: " age
 " km: " mileometer)
]
]

end

;
**
**

to-report DateREP
 let month-names (list "January" "February" "March" "April" "May" "June" "July" "August"
"September" "October" "November" "December")
 let days-in-months (list 31 28 31 30 31 30 31 31 30 31 30 31)

 let year floor (ticks / 365.01) + 1
 let month 0
 let dayOfYear remainder ticks 365
 if dayOfYear = 0 [set dayOfYear 365]
 let dayOfMonth 0
 let sumDaysInMonths 0
 while [sumDaysInMonths < dayOfYear]
 [
 set month month + 1
 set sumDaysInMonths sumDaysInMonths + item (month - 1) days-in-months
 set dayOfMonth dayOfYear - sumDaysInMonths + item (month - 1) days-in-months
]

 report (word dayOfMonth " " (item (month - 1) month-names) " " year)

end

;
**
**

to ReadFileProc
 ; reads data in from file, copied from: Netlogo: Library:
 ; Code Examples: "File Input Example"

 ifelse (file-exists? INPUT_FILE)
 ; We check to make sure the file exists first
 [
 set AllDaysAllPatchesList []
 ; IF: data are saved in a list (list still empty)

 file-open INPUT_FILE
 let dustbin file-read-line
 ; first line of input file with headings is read - but not used for anything

 while [not file-at-end?]
 [
 set AllDaysAllPatchesList sentence AllDaysAllPatchesList
 (list (list file-read file-read file-read file-read file-read
 file-read file-read file-read file-read file-read
 file-read file-read file-read file-read file-read))]
 ; 15 data colums are read in
 file-close ; closes file
 set N_FLOWERPATCHES ((length AllDaysAllPatchesList) / 365)
 if (N_FLOWERPATCHES mod 1) != 0
 [
 user-message "Error in Infile - wrong number of lines"
 set BugAlarm true
]
] ; end "ifelse"
 [
 user-message "There is no such fileINPUT_FILE in current directory!"
]
end

;
**
**

to ReadBeeMappFileProc
 ; reads colony data in from file, created by the BeeMapp app

 ifelse (file-exists? BeeMapp_FILE)

 [
 set AllBeeMappCorrectionsList []
 file-open BeeMapp_FILE
 let dustbin file-read-line
 ; first line of input file with headings is read - but not used for anything

 while [not file-at-end?]
 [
 set AllBeeMappCorrectionsList sentence AllBeeMappCorrectionsList ; 10 columns in BeeMapp
input file:
 (list (list ; repeat nColumns [file-read]
 file-read file-read file-read file-read
 file-read file-read file-read file-read
))]
 set AssessmentNumber 0
 ;(list (list file-read-line))]

 file-close
] ; end "ifelse"
 [
 user-message "There is no such BeeMapp_FILE in current directory!"
]
end

;
**
**

to BeeMappCorrectionProc ; ***NEW FOR BEEHAVE_BEEMAPP2015***

 let nextBeeMappCorrectionList item AssessmentNumber AllBeeMappCorrectionsList

 if ticks = item 1 nextBeeMappCorrectionList ; if day = date of colony next colony assessment
 [
 ; correct honey stores according to real honey stores:
 set HoneyEnergyStore ENERGY_HONEY_per_g * 1000 * item 7 nextBeeMappCorrectionList ;

 ; correct number of workers according to real colony size:
 let correctedNumberWorkers item 6 nextBeeMappCorrectionList ;
 if correctedNumberWorkers < 0 [set correctedNumberWorkers 0]

 ; correct # foragers:
 let correctedNumberForagers correctedNumberWorkers * (totalForagers / (totalIHbees +
totalForagers)) ;
 let correctedNumberForagerSquadrons round (correctedNumberForagers / SQUADRON_SIZE)

 ifelse correctedNumberForagerSquadrons * SQUADRON_SIZE < totalForagers
 [

 repeat totalForagers / SQUADRON_SIZE - correctedNumberForagerSquadrons ; if foragers have
to be REMOVED from the simulation
 [ask one-of foragerSquadrons [die]]
]
 [
 repeat correctedNumberForagerSquadrons - totalForagers / SQUADRON_SIZE ; if foragers have
to be ADDED to the simulation
 [ask one-of foragerSquadrons [hatch 1]]
]

 ; correct # in-hive bees:
 let correctedNumberIHbees correctedNumberWorkers - correctedNumberForagerSquadrons *
SQUADRON_SIZE
 let changeNumberBy1 0

 ifelse correctedNumberIHbees - totalIHbees < 0
 [set changeNumberBy1 -1] ; if IHbees have to be REMOVED from the simulation
 [set changeNumberBy1 1] ; if IHbees have to be ADDED to the simulation

 repeat sqrt ((correctedNumberIHbees - totalIHbees) ^ 2)
 [
 let applyToCohorts IHbeecohorts
 if count IHbeecohorts with [number > 0] > 0
 [set applyToCohorts IHbeecohorts with [number > 0]]

 ;ask one-of IHbeecohorts with [number > 0]
 ask one-of applyToCohorts

 [
 let chooseBee 1 + random number ; to determine which sub-cohort (healthy, infected as pupa
or as adult) is affected, depending on number of bees in each cohort
 let changeHealthy false
 let changeInfPupa false
 let changeInfAdult false

 ; determine which sub-cohort is changed:
 if chooseBee <= number_healthy
 [set changeHealthy true]

 if chooseBee > number_healthy and chooseBee <= number_healthy + number_infectedAsPupa
 [set changeInfPupa true]

 if chooseBee > number_healthy + number_infectedAsPupa and chooseBee <= number_healthy
+ number_infectedAsPupa + number_infectedAsAdult
 [set number_infectedAsAdult number_infectedAsAdult + changeNumberBy1]

 ; do the change in numbers (separate step, otherwise errors might occur)
 set number number + changeNumberBy1

 if changeHealthy = true

 [set number_healthy number_healthy + changeNumberBy1]

 if changeInfPupa = true
 [set number_infectedAsPupa number_infectedAsPupa + changeNumberBy1]

 if changeInfAdult = true
 [set number_infectedAsAdult number_infectedAsAdult + changeNumberBy1]
]
]

; NEW for new BeeMapp version that allows assessment of number of capped brood cells
(31.03.2016):
; correct # pupae:
 let correctedNumberPupae item 5 nextBeeMappCorrectionList
 if correctedNumberPupae > 1
 [
 set changeNumberBy1 0
 ifelse correctedNumberPupae - (TotalPupae + TotalDronePupae) < 0
 [set changeNumberBy1 -1] ; if IHbees have to be REMOVED from the simulation
 [set changeNumberBy1 1] ; if IHbees have to be ADDED to the simulation
 repeat sqrt ((correctedNumberPupae - (TotalPupae + TotalDronePupae)) ^ 2)
 [
 let applyToCohorts pupaeCohorts ; defines the pupal cohorts that are affected, here: all worker
pupae (only if no worker pupae at all are currently present in the model
 if count pupaeCohorts with [number > 0] > 0 ; otherwise (i.e. IF there are worker pupae
present), then only those worker pupae cohorts with number > 0 are affected. Hence gaps (e.g. due
to lack of pollen) still remain
 [set applyToCohorts pupaeCohorts with [number > 0]]
 if random (TotalPupae + TotalDronePupae) > TotalPupae ; in this case, the number of drone
pupae will be modified
 [
 set applyToCohorts dronePupaeCohorts
 if count dronePupaeCohorts with [number > 0] > 0
 [set applyToCohorts pupaeCohorts with [number > 0]]

]
 ask one-of applyToCohorts
 [
 set number number + changeNumberBy1
 set number_healthy number_healthy + changeNumberBy1
 set TotalPupae TotalPupae + changeNumberBy1
]
]
]

 ; PRESENCE/ABSENCE of QEL: -1: not assessed, 0: not present, 1: present
 ; new queen, if no queen was found in real colony
 if item 2 nextBeeMappCorrectionList = 0
 [set Queenage 0]

 ; remove eggs, if no eggs were found in real colony
 if item 3 nextBeeMappCorrectionList = 0
 [
 ask eggcohorts [set number 0]
 set NewWorkerLarvae 0
 ask droneeggcohorts [set number 0]
 set NewDroneLarvae 0
]

 ; remove larvae, if no larvae were found in real colony
 if item 4 nextBeeMappCorrectionList = 0
 [
 ask larvaecohorts [set number 0]
 set NewWorkerPupae 0
 ask dronelarvaecohorts [set number 0]
 set NewDronePupae 0
]

 ; remove pupae, if no pupae were found in real colony
 if item 5 nextBeeMappCorrectionList = 0
 [
 ask pupaecohorts [set number 0 set number_healthy 0 set number_infectedAsPupa 0]
 set NewIHbees 0
 set NewIHbees_healthy 0
 ask dronepupaecohorts [set number 0 set number_healthy 0 set number_infectedAsPupa 0]
 set NewDrones 0
 set NewDrones_healthy 0
]

 if nextBeeMappCorrectionList != last AllBeeMappCorrectionsList ; if current correction is last item
in file/AllBeeMappCorrectionsList, then AssessmentNumber is no longer increased
 [
 set AssessmentNumber AssessmentNumber + 1
]
]

 CountingProc

end

;
**
**

to DefaultProc
; new variables:
set AllowReinfestation FALSE

;set BeeMapp_FILE "ColonyAssessment.txt"
set ContinuousBroodRemoval FALSE
set DroneBroodRemoval FALSE
set EfficiencyPhoretic2 0
; FrameType: no default setting
; HiveType: no default setting
set KillAllMitesInCells FALSE
set KillAllMitesInCells2 FALSE
set KillOpenBrood FALSE
set KillOpenBrood2 FALSE
set MiteReinfestation 0.1
set ReadBeeMappFile FALSE
set RemovalDay1 100
set RemovalDay2 140
set RemovalDay3 180
set RemovalDay4 220
set RemovalDay5 240
set TreatmentDay2 0
set TreatmentDuration2 0
; WeatherFile: no default setting

; new on interface (unchanged default values):
set EfficiencyPhoretic 0.115
set TreatmentDay 270 ; 270: 27.September
set TreatmentDuration 40 ; (28-40d) Fries et al. 1994
set AddedPollen_kg 0.5

; old variables, new default values:
set GenericPlot1 "honey & pollen stores [kg]"

; old variables, removed:
; set Testing "SIMULATION - NO TEST"
; old & unchanged (Beehave2013):
set AddPollen FALSE
set AlwaysDance FALSE
set CONC_G 1.5
set CONC_R 1.5
set ConstantHandlingTime FALSE
set CRITICAL_COLONY_SIZE_WINTER 4000
set Details TRUE
set DANCE_INTERCEPT 0 ; -17.7
set DANCE_SLOPE 1.16
set DETECT_PROB_G 0.2
set DETECT_PROB_R 0.2
set DISTANCE_G 500
set DISTANCE_R 1500
set DotDensity 0.01 ; (affects sequence of random numbers)
set EggLaying_IH TRUE
set Experiment "none"

set FeedBees FALSE
set ForagingMap "Nectar and Pollen" ; (affects sequence of random numbers)
set GenericPlot2 "colony structure workers"
set GenericPlot3 "broodcare [%]"
set GenericPlot4 "mites"
set GenericPlot5 "nectar availability [l]"
set GenericPlot6 "pollen availability [kg]"
set GenericPlot7 "mean trip duration"
set GenericPlot8 "foragers today [%]"
set HarvestingDay 135
set HarvestingPeriod 80
set HarvestingTH 20
set HoneyHarvesting FALSE
set HoneyIdeal FALSE
;set INPUT_FILE "Input_2-1_FoodFlow.txt"
set MAX_BROODCELLS 2000099
set MAX_km_PER_DAY 7299
set MAX_HONEY_STORE_kg 50
set MergeColoniesTH 5000
set MergeWeakColonies FALSE
set MiteReproductionModel "Martin"
set ModelledInsteadCalcDetectProb FALSE
set N_INITIAL_BEES 10000
set N_INITIAL_MITES_HEALTHY 0
set N_INITIAL_MITES_INFECTED 0
set POLLEN_G_kg 1.0
set POLLEN_R_kg 1.0
set PollenIdeal FALSE
set ProbLazinessWinterbees 0 ; 0.7
set QUANTITY_G_l 20
set QUANTITY_R_l 20
set QueenAgeing FALSE
; RAND_SEED: no default setting
set ReadInfile false
set RemainingHoney_kg 5
set SeasonalFoodFlow TRUE
set SHIFT_G -40
set SHIFT_R 30
set ShowAllPlots TRUE
set SQUADRON_SIZE 100
set StopDead TRUE
set Swarming "No swarming"
set TIME_NECTAR_GATHERING 1200
set TIME_POLLEN_GATHERING 600
set VarroaTreatment FALSE
set Virus "DWV"
set Weather "Rothamsted (2009)" ; "Rothamsted (2009-2011)"
set WriteFile FALSE
;set X_Days 7

end

;
**
**

; *** END ********* END ********* END ********* END ********* END *********
END ********* END ********* END ********* END ********* END **
;
**
**
